
Leveraging TVM as a front-end
compiler for RISC-V based custom

tinyML processor

Vaibhav Verma and Mircea R. Stan

High-Performance Low-Power Lab (HPLP)

University of Virginia

vv8dn@virginia.edu

Need for on-device tinyML

• Latency – enable real-time AI systems

• QoS – cannot rely on connectivity in
remote areas

• Security – sending data over network
not secure

• Privacy – keep private data locally on
device

• Bandwidth – send “information” to
cloud rather than “data”

• Cost – data communication is costly

On-
device

AI

vv8dn@virginia.edu 2

But tinyML/Edge AI is different!

Smaller neural network models

Smaller batch sizes (≈ 1)

Edge devices are power, cost, area and size limited

Edge processors support both AI and non-AI applications

Edge processors lack support for Keras, PyTorch, MXNet etc.

vv8dn@virginia.edu 3

AI-RISC

Custom RISC-V processor with ISA
extensions targeting AI applications

Tightly integrated AI accelerators for
fine-grained offloading of AI tasks

End-to-end hardware/software co-
design solution

Support for AI and non-AI
applications on the same processor

vv8dn@virginia.edu 4

Hardware/Software Co-design

✓End-to-end design methodology
• TVM on the frontend

• Synopsys ASIP Designer on the backend

✓Support for multiple Domain Specific
Language (DSL) frontends - Pytorch,
MXNet, TFLite, Tensorflow, DarkNet etc.

✓Verified with both 32 and 64-bit RISC-V

✓Quantization support

vv8dn@virginia.edu 5

Compilers are hard!

➢ 2-step compilation – TVM + ASIP Designer generated C compiler

➢ Goal is to have no/minimum interaction with TVM generated C code

• Problem 1 – ASIP Compiler is not smart
enough to detect opportunities for
complex instructions like VMM, GEMM etc.

• Works well for simple instructions like
MAC.

• Solution - Expose new instructions to TVM
via compiler intrinsics.

vv8dn@virginia.edu 6

Compiler issues with custom instructions

• Problem 2 – Breaking the convolution schedule leads to accuracy
issues.

• Issue 1 – Wrong allocation of operands
• Solved by TVM buffer and strided access of operands from bigger matrix

• Issue 2 – Wrong data type in quantized NN
• Defined input/output data types in TVM hardware intrinsic call

• 8-bit inputs and 16/32-bit accumulated result.

• Issue 3 – Kernel and Input data layout
• TVM supports only a few Input/Filter layouts with specific ISA.

• Adding support for required Input-Filter layout combinations in TVM for C
hardware target used in AI-RISC.

vv8dn@virginia.edu 7

More Compiler issues

• Problem 3 – TVM support for breaking the convolution computation
to match custom extension kernel size is limited.
• TVM throws random errors when breaking the computation schedule using

“tensorize” schedule pass.

• Exact same convolution works with tensorize as a standalone kernel but not
as a part of neural network.

• Solution – Trying to debug the exact issue but till we find a reliable
solution we work with what we have.
• Breaking the computation schedule into error-free parts and adapting the

custom instructions accordingly for testing purposes.

vv8dn@virginia.edu 8

TVM generated C code

vv8dn@virginia.edu 9

Without Custom instructions

With Custom instructions

Speedup on GEMV kernel

• A Matrix → 8x8
• B Vector → 1x8
• Input datatype → int8
• Output datatype → int16

vv8dn@virginia.edu 10

Speedup on single CONV2D kernel

• Input image → 7x7
• Input channels → 8
• Filter → 2x2
• Output channels → 2
• Input datatype → int8
• Output datatype → int16
• data_layout→ NHWC
• kernel_layout→ HWIO

vv8dn@virginia.edu 11

Speedup on ResNet-8 network from MLPerf Tiny

vv8dn@virginia.edu 12

Questions?

• This work is funded by SRC under GRC AIHW task 2945.001.

vv8dn@virginia.edu 13

