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Need for on-device tinyML

* Latency — enable real-time Al systems

* QoS — cannot rely on connectivity in
remote areas

* Security — sending data over network
not secure

* Privacy — keep private data locally on
device

e Bandwidth — send “information” to
cloud rather than “data”

* Cost — data communication is costly
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But tinyML/Edge Al is different!

N\

Smaller neural network models
\

‘ Smaller batch sizes (= 1)

\

‘ Edge devices are power, cost, area and size limited
/

‘ Edge processors support both Al and non-Al applications

/
‘ Edge processors lack support for Keras, PyTorch, MXNet etc.

/
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Al-RISC

Custom RISC-V processor with ISA
extensions targeting Al applications

p ‘\\\
‘ Vet o :
ector [ _
Tightly integrated Al accelerators for RISC-V AfU B AFU -
fine-grained offloading of Al tasks Hardware
Contributed
Matrix Aactivation __ Systolic “ard"f’are
End-to-end hardware/software co- AFU e AFU i ofrbuted
design solution m

k ISA Extensions targeting AFUs j

Support for Al and non-Al
applications on the same processor
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Hardware/Software Co-design

v End-to-end design methodology

e TVM on the frontend ",
* Synopsys ASIP Designer on the backend =
-ftvm

v/Support for multiple Domain Specific 4 b
Language (DSL) frontends - Pytorch,
MXNet, TFLite, Tensorflow, DarkNet etc.

v'Verified with both 32 and 64-bit RISC-V S‘/D UJIE)S\/§®

v’ Quantization support

vv8dn@virginia.edu
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Compilers are hard!

» 2-step compilation — TVM + ASIP Designer generated C compiler
» Goal is to have no/minimum interaction with TVM generated C code

—

° Problem 1 — ASIP Compiler is not smart Split loops for convolution schedule in TVM
enough to detect opportunities for
complex instructions like VMM, GEMM etc.

Replace inner loops with PIM VMM

* Works well for simple instructions like instructions
MAC.

* Solution - EXpOSE new instructions to TVM TVM calls AI-RISC VMM instructions in C code
Via compller INtrinsics.
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Compiler issues with custom instructions

* Problem 2 — Breaking the convolution schedule leads to accuracy
Issues.

* Issue 1 — Wrong allocation of operands
e Solved by TVM buffer and strided access of operands from bigger matrix

* Issue 2 — Wrong data type in quantized NN
* Defined input/output data types in TVM hardware intrinsic call
* 8-bit inputs and 16/32-bit accumulated result.

* Issue 3 — Kernel and Input data layout
* TVM supports only a few Input/Filter layouts with specific ISA.

* Adding support for required Input-Filter layout combinations in TVM for C
hardware target used in Al-RISC.

vv8dn@virginia.edu




More Compiler issues

* Problem 3 — TVM support for breaking the convolution computation
to match custom extension kernel size is limited.

 TVM throws random errors when breaking the computation schedule using
“tensorize” schedule pass.

* Exact same convolution works with tensorize as a standalone kernel but not
as a part of neural network.

* Solution — Trying to debug the exact issue but till we find a reliable
solution we work with what we have.

* Breaking the computation schedule into error-free parts and adapting the
custom instructions accordingly for testing purposes.

vv8dn@virginia.edu n
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TVM generated C code

for (1int32 t kK outer = 0; Kk outer < ; ++K outer) {
for (int32 t y inner = 0; y inner < 8; ++y inner) {

)

1

{

) + y inner))] = (((int32 t*)computel)[(((z outer y outer fused * 8) + y inner)
1

for (int32 t k inner = 0; k inner < 8; ++k inner
((int32 t*)computel)[(((z outer y outer fused
)] + (((int32 t)((int8 t*)placeholder)[(((k outer * 8) + k inner))]) * ((int32 t)((int8 t*)placeholderl)[(((((z outer y outer fused
) + (y inner * )) + (k outer * 8)) + k inner))])))

)
’ Without Custom instructions

for (1nt32 t k outer = 0; k outer < ; ++k outer) {

(void) Sy S I ARV RISl M ( ( (int8 t *)placeholder + ((k outer * 8))), ((int8 t *)placeholderl + (((z outer y outer fused *
) + (k outer * 8)))), ((int32 t *)computel + ((z outer y outer fused * 8))), 8, B

} :
}

ehlilgemm 1x8x8 update ISQWNLHMI

int8 t *aa, int8 t *bb, int32 t *cc,
int A stride, int B stride, int C stride) {

for (int 1 = 0; 1 < 8; i++) {

PIM mem store((char*)i,*((long*)(bb+i*B stride))); . . .
) With Custom instructions
chess memory fence();

long out® = PIM mac O(*((long*) (aa)));

long chess storage(x13) outl = PIM mac 1(*((long*) (aa)));
long chess storage(x14) out2 = PIM mac 2(*((long*) (aa)));
long out3 = PIM mac 3(*((long*) (aa)));

long out[4] = { out®, outl, out2, out3};

for (int 1 = 0; i < 8; i++) {
cc[i] += *((int32 t*)(&out) + 1i);

} vv8dn@virginia.edu
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Speedup on GEMV kernel

A Matrix = 8x8

B Vector =2 1x8

Input datatype = int8
Output datatype =2 intl6
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Speedup on GEMV kernel

17.63

5.68
— ]
Plain RISC-V RISC-V + MAC RISC-V + GEMM  RISC-V + VMM +
1x8x1 + MAC MAC
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Speedup on single CONV2D kernel
Input image = 7x7 Speedup on CONV2D kernel
Input channels 2> 8 160 1.50
Filter 2 2x2 140
Output channels = 2 s 1.07 1.09 114
Input datatype =2 int8 o
Output datatype = intl6
data_layout 2 NHWC 0'40
kernel_layout = HWIO o
o Plain RISC-V RISC-V + MAC RISC-V + GEMM 1x8x1 + RISC-V + GEMM 2x4x2 + RISC-V + VMM + MAC
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Speedup on ResNet-8 network from MLPerf Tiny
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Questions?

* This work Is funded by SRC under GRC AIHW task 2945.001.
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