

Leveraging TVM as a front-end compiler for RISC-V based custom tinyML processor

Vaibhav Verma and Mircea R. Stan High-Performance Low-Power Lab (HPLP) University of Virginia vv8dn@virginia.edu

Need for on-device tinyML

- Latency enable real-time AI systems
- **QoS** cannot rely on connectivity in remote areas
- Security sending data over network not secure
- Privacy keep private data locally on device
- Bandwidth send "information" to cloud rather than "data"
- Cost data communication is costly

But tinyML/Edge AI is different!

Smaller neural network models

Smaller batch sizes (≈ 1)

Edge devices are power, cost, area and size limited

Edge processors support both AI and non-AI applications

Edge processors lack support for Keras, PyTorch, MXNet etc.

AI-RISC

Custom RISC-V processor with ISA extensions targeting AI applications

Tightly integrated AI accelerators for fine-grained offloading of AI tasks

End-to-end hardware/software codesign solution

Support for AI and non-AI applications on the same processor

Hardware/Software Co-design

- End-to-end design methodology
 - TVM on the frontend
 - Synopsys ASIP Designer on the backend
- Support for multiple Domain Specific Language (DSL) frontends - Pytorch, MXNet, TFLite, Tensorflow, DarkNet etc.
- ✓ Verified with both 32 and 64-bit RISC-V
- ✓ Quantization support

Compilers are hard!

- > 2-step compilation TVM + ASIP Designer generated C compiler
- Goal is to have no/minimum interaction with TVM generated C code
- Problem 1 ASIP Compiler is not smart enough to detect opportunities for complex instructions like VMM, GEMM etc.
 - Works well for simple instructions like MAC.
- Solution Expose new instructions to TVM
 via compiler intrinsics.

Compiler issues with custom instructions

- **Problem 2** Breaking the convolution schedule leads to accuracy issues.
- Issue 1 Wrong allocation of operands
 - Solved by TVM buffer and strided access of operands from bigger matrix
- Issue 2 Wrong data type in quantized NN
 - Defined input/output data types in TVM hardware intrinsic call
 - 8-bit inputs and 16/32-bit accumulated result.
- Issue 3 Kernel and Input data layout
 - TVM supports only a few Input/Filter layouts with specific ISA.
 - Adding support for required Input-Filter layout combinations in TVM for C hardware target used in AI-RISC.

More Compiler issues

- **Problem 3** TVM support for breaking the convolution computation to match custom extension kernel size is limited.
 - TVM throws random errors when breaking the computation schedule using "tensorize" schedule pass.
 - Exact same convolution works with tensorize as a standalone kernel but not as a part of neural network.
- Solution Trying to debug the exact issue but till we find a reliable solution we work with what we have.
 - Breaking the computation schedule into error-free parts and adapting the custom instructions accordingly for testing purposes.

TVM generated C code

Speedup on GEMV kernel

- A Matrix \rightarrow 8x8
- B Vector \rightarrow 1x8
- Input datatype \rightarrow int8
- Output datatype \rightarrow int16

Speedup on single CONV2D kernel

- Input image \rightarrow 7x7
- Input channels \rightarrow 8
- Filter \rightarrow 2x2
- Output channels \rightarrow 2
- Input datatype \rightarrow int8
- Output datatype \rightarrow int16
- data_layout \rightarrow NHWC
- kernel_layout \rightarrow HWIO

Speedup on ResNet-8 network from MLPerf Tiny

Questions?

• This work is funded by SRC under GRC AIHW task 2945.001.