TVMCon 2021

# VTA++:

# Expanded Design Space Exploration with an Enhanced Versatile Tensor Accelerator

Suvadeep Banerjee, Steve Burns, Pasquale Cocchini,

Abhijit Davare, Shweta Jain, Desmond Kirkpatrick,

Anton Sorokin, Jin Yang, Zhenkun Yang

Intel Labs



### Motivation: Design Methodology Research

#### Inspired by 2018 Turing Award paper [1]:

- Domain-specific languages (DSLs) and architectures (DSAs) are key.
- Gains "... will require a vertically integrated design team that understands applications, domain-specific languages and related compiler technology, computer architecture and organization, and the underlying implementation technology."

#### Research Goal

Lower the design cost for DSLs deployed onto DSAs

#### Hypothesis

- Incremental feature addition with a vertical development stack
- Neither software-first nor hardware-first design

#### TVM/VTA was an appealing starting point

- Development stack spans workload down to hardware, yet fast simulation possible
- User-schedulable compiler provides rich software choices
- Parameterized hardware presents a large design space

[1] Hennessy, John L., and David A. Patterson. "A new golden age for computer architecture." Communications of the ACM 62.2 (2019): 48-60.

# Goals:

Increase size of the VTA design space and enable higher performance

#### Outline

- Background: VTA
- Increasing Throughput
- Expanded Design Space
- Results
- Conclusion

# Background: Versatile Tensor Accelerator (VTA) [1]

- DNN Inference Accelerator
  - 8-bit input/weight, 32-bit acc
  - GEMM and ALU units
  - Decoupled-Access-Execute [2] uArch with load/compute/store parallelism
- Multiple targets
  - fsim: behavioral, C++
  - tsim: cycle-accurate, CHISEL
  - Others: pynq, de10, focl, etc
- CHISEL [3]
  - Hardware construction language which produces RTL



Balance execution unit shape/throughput, DRAM access, scratchpad size

[1] Moreau, Thierry, et al. "A hardware-software blueprint for flexible deep learning specialization." *IEEE Micro* 39.5 (2019): 8-16.

[2] Smith, James E. "Decoupled access/execute computer architectures." ACM Transactions on Computer Systems (TOCS) 2.4 (1984): 289-308.

[3] Bachrach, Jonathan, et al. "Chisel: constructing hardware in a scala embedded language." DAC Design Automation Conference 2012. IEEE, 2012.



- GEMM datapath in tsim was pipelined, but control logic was not
- Added pipelined control (index generator) to reduce initiation interval to 1 cycle, resulting in a ~4x throughput increase
- Similar changes for ALU, but acc src/dest port restriction
- Optional flops added to meet frequency targets for larger GEMM shapes

### Expanded Design Space: More Capable Memory Interface



- Added configurable memory width (8-64 bytes)
- Now allow multiple outstanding transactions with out-of-order completion

## Expanded Design Space: GEMM and scratchpads

- GEMM shape
  - Separate BLOCK\_IN from BLOCK\_OUT
  - Add BATCH support
- Larger scratchpads
  - Also permit 64-bit uops
  - Retain 128-bit instruction width: expand some fields while shrinking others



Moreau, Thierry, et al. "VTA: an open hardware-software stack for deep learning." arXiv preprint arXiv:1807.04188 (2018).

# Expanded Design Space: Compiler

- Tiling Parameter Search
  - Heuristic guided analytical scheme for mapping conv2D and depthwise conv2d to VTA configurations
    - Simple memory model allows us to analytically estimate cycle count impact of scheduling decisions
    - With vastly more configurations, measurement is expensive
  - VTA previously used a measurement-guided database of optimal schedules per configuration from AutoTVM
- Double buffering improvements
  - Previous scheme already allowed overlap in load/compute/store execution
  - Now enhanced to allow greater reuse of scratchpad data



#### Additional Layers

- Depthwise-Conv enables Mobilenet 1.0 [1]
  - Elementwise 8-bit multiplication instruction added
- Pooling support allows FC layer in ResNets [2] to be offloaded to VTA as well
  - Max Pooling
    - Load instruction augmented with parameterized pad values: 0 and MAX\_NEG
  - Average Pooling
    - Approximate division using ALU shifts and adds

| [1] Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for |
|----------------------------------------------------------------------------------------|
| mobile vision applications." arXiv preprint arXiv:1704.04861 (2017).                   |
| [2] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of |

the IEEE conference on computer vision and pattern recognition. 2016.

| Table 1. MobileNet Body Architecture |                                      |                            |  |  |  |  |
|--------------------------------------|--------------------------------------|----------------------------|--|--|--|--|
| Type / Stride                        | Filter Shape                         | Input Size                 |  |  |  |  |
| Conv / s2                            | $3 \times 3 \times 3 \times 32$      | $224 \times 224 \times 3$  |  |  |  |  |
| Conv dw / s1                         | $3 \times 3 \times 32$ dw            | $112 \times 112 \times 32$ |  |  |  |  |
| Conv / s1                            | $1 \times 1 \times 32 \times 64$     | $112 \times 112 \times 32$ |  |  |  |  |
| Conv dw / s2                         | $3 \times 3 \times 64$ dw            | $112 \times 112 \times 64$ |  |  |  |  |
| Conv / s1                            | $1 \times 1 \times 64 \times 128$    | $56 \times 56 \times 64$   |  |  |  |  |
| Conv dw / s1                         | $3 \times 3 \times 128 \text{ dw}$   | $56 \times 56 \times 128$  |  |  |  |  |
| Conv / s1                            | $1 \times 1 \times 128 \times 128$   | $56 \times 56 \times 128$  |  |  |  |  |
| Conv dw / s2                         | $3 \times 3 \times 128 \text{ dw}$   | $56 \times 56 \times 128$  |  |  |  |  |
| Conv / s1                            | $1 \times 1 \times 128 \times 256$   | $28 \times 28 \times 128$  |  |  |  |  |
| Conv dw / s1                         | $3 \times 3 \times 256 \text{ dw}$   | $28 \times 28 \times 256$  |  |  |  |  |
| Conv / s1                            | $1 \times 1 \times 256 \times 256$   | $28 \times 28 \times 256$  |  |  |  |  |
| Conv dw / s2                         | $3 \times 3 \times 256 \text{ dw}$   | $28 \times 28 \times 256$  |  |  |  |  |
| Conv / s1                            | $1 \times 1 \times 256 \times 512$   | $14 \times 14 \times 256$  |  |  |  |  |
| $5 \times \text{Conv dw / s1}$       | $3 \times 3 \times 512 \text{ dw}$   | $14 \times 14 \times 512$  |  |  |  |  |
| Conv / s1                            | $1 \times 1 \times 512 \times 512$   | $14 \times 14 \times 512$  |  |  |  |  |
| Conv dw / s2                         | $3 \times 3 \times 512 \text{ dw}$   | $14 \times 14 \times 512$  |  |  |  |  |
| Conv / s1                            | $1 \times 1 \times 512 \times 1024$  | $7 \times 7 \times 512$    |  |  |  |  |
| Conv dw / s2                         | $3 \times 3 \times 1024 \text{ dw}$  | $7 \times 7 \times 1024$   |  |  |  |  |
| Conv / s1                            | $1 \times 1 \times 1024 \times 1024$ | $7 \times 7 \times 1024$   |  |  |  |  |
| Avg Pool / s1                        | Pool $7 \times 7$                    | $7 \times 7 \times 1024$   |  |  |  |  |
| FC/s1                                | $1024 \times 1000$                   | $1 \times 1 \times 1024$   |  |  |  |  |
| Softmax / s1                         | Classifier                           | $1 \times 1 \times 1000$   |  |  |  |  |

| layer name | output size | 18-layer                                                                           | 34-layer                                                                           | 50-layer                                                                                         | 101-layer                                                                                                    |
|------------|-------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| conv1      | 112×112     | 7×7, 64, stride 2                                                                  |                                                                                    |                                                                                                  |                                                                                                              |
|            |             | 3×3 max pool, stride 2                                                             |                                                                                    |                                                                                                  |                                                                                                              |
| conv2_x    | 56×56       | $\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$       | $\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$       | $\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$     | $\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$                 |
| conv3_x    | 28×28       | $\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$ | $\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$ | $ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4 $ | $ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $ |
| conv4_x    |             | $\left[\begin{array}{c} 3\times3, 256\\ 3\times3, 256 \end{array}\right]\times2$   |                                                                                    | [ 1×1, 1024 ]                                                                                    | $\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$             |
| conv5_x    | 7×7         | $\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$     | $\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$     | $\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$  | $\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$              |
|            | 1×1         | average pool, 1000-d fc, softmax                                                   |                                                                                    |                                                                                                  |                                                                                                              |
| FLO        | OPs         | $1.8 \times 10^{9}$                                                                | $3.6 \times 10^{9}$                                                                | $3.8 \times 10^{9}$                                                                              | $7.6 \times 10^9$                                                                                            |
|            |             |                                                                                    |                                                                                    |                                                                                                  |                                                                                                              |

### Results: Cycle count vs. Scaled area



- Scaled area is for an ASIC process
  - Using split register files for larger configurations
- GEMM/ALU pipelining
  - ~4x reduction in cycle count
  - Minimal area change
- Must balance compute vs. scratchpad/bandwidth
- Not shown here:
  - Batch size > 1
  - Rectangular GEMM shapes

### Results: Roofline Analysis

- Roofline plot [1] identifies compute and communication bottlenecks
  - Compute: y-axis, GEMM MAC count
  - Communication: diagonal, bytes/cycle of memory bandwidth
- Each point represents a ResNet-18 RTL simulation
- Much closer to theoretical maximums
  - Lower MACs are compute bound,
  - Higher MACs are memory bound

[1] Williams, Samuel, Andrew Waterman, and David Patterson. "Roofline: an insightful visual performance model for multicore architectures." *Communications of the ACM* 52.4 (2009): 65-76.



#### Results: Continuous Integration



- Test-Driven design (TDD) loop consists of CHISEL unit tests
  - Initially used for development
  - Valuable for hardware coverage
- Runtimes shown for ResNet-18 workload
- Cycle-accurate tsim simulation is surprisingly fast
  - Most VTA features can be simulated in under 3.5 minutes
  - Parallelization not restricted by physical devices or licensing

- Behavioral simulation helps debug
  - Dynamic Trace-Based Validation

#### Conclusion

- Enhanced performance and expanded design space
- Open source contributions:
  - Pipelined GEMM, pipelined ALU, and memory interface changes have been upstreamed to the tvm-vta repository
  - All other changes are available in a fork
- Read our arXiv paper to learn more:
  - https://arxiv.org/abs/2111.15024
- Our research focus is improving design methodologies
  - We are hiring!
- Contact me with comments/questions at firstname.lastname@intel.com

#