
Jyotsna Verma
Qualcomm Innovation Center, Inc.

TVM ConferenceDecember, 2021

Lightweight Profiling for TVM

2

Motivation

Typical life cycle of a model through TVM

ML Model
into TVM
supported

frameworks

Relay
IR

Run Graph level
optimizations

Lower into TIR and
run TIR passes

LLVM bitcode

LLVM
optimizations

Model
Shared
library

Run on
Target

Evaluate
performance

Identify and Fix
performance

issues

3

Profiling

• First step towards improving performance of any application

•Helps determine performance bottlenecks

•Provide feedback on performance optimizations

• Not uncommon for a compiler optimization to work in some cases but not always, and may require adjustments

4

Current profiling capability in TVM

•Debug graph executor

• Provides time elapsed for each layer in the graph, and reports as a JSON or CSV file

• Can be very useful in the absence of other profiling tools

• But limited to only coarse-grained function level information

 Sample Output:
 * Some of the columns are excluded

5

Additional profiling options

•On-device profiling capability

• Best way to get real time performance metrics for an application

• Often involves tedious process and may require specialized knowledge

•Simulator

• Models on-target behavior and may provide detailed instruction level profiling info

• Often simulators are slow and may not be feasible when in need for a quick feedback

6

Lightweight Profiling (LWP) in TVM

• Attempts to fill the gap between various profiling options
o Provide loop level profiling in terms of processor cycles or any other target specific metric

✓More detailed information than debug graph executor

✓Not as detailed as hardware/simulator but a lot more efficient

oCan be used to map TIR with LLVM bitcode and assembly

• A simple idea motivated by the profiling instrumentation in LLVM
• LLVM’s profiling instrumentation occurs in the front end

• Also, it only tracks execution count and not actual cycles spent on a code segment

Qualcomm Hexagon is a product of Qualcomm Technologies, Inc. and/or it's subsidiaries. 7

Basic Design

Involves 3 main components:
• TIR pass

o Instrument functions/loops with TVM profile builtin

oDuring codegen, builtin is replaced with a call to target specific handler

• LWP Handler

oRecords profiling data into a buffer

o For Qualcomm® Hexagon ™, the handler is implemented in assembly and is optimized to minimize overhead.

• Process the profile data to construct a report

8

TIR Pass Implementation Details

Instruments IRModule with profiling builtin
• Find depth of every loop in the function

• Assign unique ID to every function and loop in the module

• The maximum loop depth for instrumentation can be controlled using a flag during model compilation

• Instrumented loops and functions are encapsulated within the profiling builtin

9

With LWP instrumentation

10

LWP Handler

• By default, profiling builtins are ignored during codegen

• Target specific codegen needs to lower builtin to their handler

• Target needs to provide their own handler implementation

 Example Handler:

11

Challenges

The simple design resulted in LWP buffer overflowing
• Added a secondary buffer which is indexed using the unique ID and is used to keep track of the

execution count

• Reduced logging at a specific call site to first 100 instances

• Information from both buffers is combined offline to calculate total processor cycles for each loop

12

Basic workflow for LWP

Enable LWP during
compilation and generate

model .so

Hexagon Launcher
Run model using

launcher
Generate LWP

json file

JSON file

• Uses TVM runtime to run a
model on Hexagon backend

• Contains LWP handler
implementation

• Writes runtime profiling data
into a json file

13

LWP Report

14

Limitations

•Call to the handler has a potential to affect LLVM optimizations and therefore alter codegen

•Can affect performance of the instrumented code

• Instrumentation of the inner loops should be avoided

• For the outer loops, performance overhead should be minimal, and we should be able to adjust it during processing of

the LWP data if needed.

•Doesn’t work for loops that are parallelized

15

Future work

•Replace handler calls with LLVM intrinsic to minimize any impact on codegen

•Provide additional compile time config flags

• Better instrumentation control. For example:

o Instrument loops with siblings

oUse loop height as a criteria to limit instrumentation

Follow us on:

For more information, visit us at:

www.qualcomm.com & www.qualcomm.com/blog

Thank you

Nothing in these materials is an offer to sell any of the
components or devices referenced herein.

©2018-2021 Qualcomm Technologies, Inc. and/or its
affiliated companies. All Rights Reserved.

Qualcomm and Hexagon are trademarks or registered
trademarks of Qualcomm Incorporated. Other products
and brand names may be trademarks or registered
trademarks of their respective owners.

References in this presentation to “Qualcomm” may mean Qualcomm
Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries
or business units within the Qualcomm corporate structure, as
applicable. Qualcomm Incorporated includes our licensing business,
QTL, and the vast majority of our patent portfolio. Qualcomm
Technologies, Inc., a subsidiary of Qualcomm Incorporated, operates,
along with its subsidiaries, substantially all of our engineering,
research and development functions, and substantially all of our
products and services businesses, including our QCT semiconductor
business.

