December, 2021 TVM Conference QUCI|CONVV\

Lightweight Profiling for TVM

Jyotsna Verma
Qualcomm Innovation Center, Inc.

Motivation

ML Model

into TVM

supported
frameworks

Run Graph level
optimizations

LLVM bitcode

Lower into TIR and LLVM
run TIR passes optimizations

Typical life cycle of a model through TVM

Identify and Fix
performance

issues

Profiling

* First step towards improving performance of any application
* Helps determine performance bottlenecks

* Provide feedback on performance optimizations

* Not uncommon for a compiler optimization to work in some cases but not always, and may require adjustments

Current profiling capability in TVM

*Debug graph executor

* Provides time elapsed for each layer in the graph, and reports as a JSON or CSV file

* Can be very useful in the absence of other profiling tools

 But limited to only coarse-grained function level information

Sample Output:

* Some of the columns are excluded

Name Duration (us) | Percent
tvmgen_default fused nn _conv2d add multiply add multiply add nn_relu 10224300{ 23.94

tvmgen_default fused nn_conv2d add multiply add add nn relu 5 1837470 4.30238
tvmgen_default fused nn_conv2d add add nn _relu 7 1268090 2.9692

tvmgen_default fused nn_conv2d add add nn relu 5 1152130| 2.69767
tvmgen_default fused nn _conv2d add add nn relu 5 1151580| 2.69638
tvmgen_default fused nn _conv2d add add nn relu 5 1150080| 2.69289
tvmgen default fused nn _conv2d add add nn relu 7 1126730 2.63821
tvmgen_default fused nn_conv2d add add nn _relu 6 818770| 1.91713
tvmgen_default fused nn_conv2d add add nn relu 6 813481 1.90474
tvmgen_default fused nn _conv2d add add nn relu 6 808125| 1.8922

Additional profiling options

*On-device profiling capability
* Best way to get real time performance metrics for an application

 Often involves tedious process and may require specialized knowledge

*Simulator

* Models on-target behavior and may provide detailed instruction level profiling info

» Often simulators are slow and may not be feasible when in need for a quick feedback

Lightweight Profiling (LWP) in TVM

« Attempts to fill the gap between various profiling options
o Provide loop level profiling in terms of processor cycles or any other target specific metric

v"More detailed information than debug graph executor

v'Not as detailed as hardware/simulator but a lot more efficient

o Can be used to map TIR with LLVM bitcode and assembly

* A simple idea motivated by the profiling instrumentation in LLVM

* LLVM'’s profiling instrumentation occurs in the front end

 Also, it only tracks execution count and not actual cycles spent on a code segment

Basic Design

Involves 3 main components:
* TIR pass

o Instrument functions/loops with TVM profile builtin

o During codegen, builtin is replaced with a call to target specific handler
* LWP Handler
o Records profiling data into a buffer

o For Qualcomm® Hexagon ™, the handler is implemented in assembly and is optimized to minimize overhead.

* Process the profile data to construct a report

TIR Pass Implementation Details

Instruments IRModule with profiling builtin
* Find depth of every loop in the function

 Assign unique ID to every function and loop in the module
» The maximum loop depth for instrumentation can be controlled using a flag during model compilation

* Instrumented loops and functions are encapsulated within the profiling builtin

With LWP instrumentation

GlobalVar (tvmgen main fused nn conv2d expand dims expand dims a

allocate A[float32 * 1685440], storage scope = global
allocate B[float32 * 114688], storage scope = global
allocate C[float32 * 802816], storage_scope = global
for (yy., 0, 229)

for (xx, O,

DT

A[(((yy*73
}

U
or (yy. {
for (xx, 0, 8) {
for (cc, 0, 32) {
B[((((££%1792) + (yy*256)) + (xx*32)) + cc)]

}
}
for (i1, 0, 64)
for (12, 0, 112)
for (13, 0, 112)
[(((11*12544) + (i2*112))
or (ry, 0, 7)
for (rc.rx.fused.outer, 0,
for (rc.rx.fused.inner, 0
CL(((11*%12544) + (12*112))

ir.profile intrinsic(0)
allocate A[float32 * 1685440],
allocate B[float32 * 114688], storage
allocate C[float32 * 802816], storage_
S Worofile intrinsic (1)
for (yy, 0, 229) {
ir.profile intrinsic(2)
for (xx, 0, 230) {
e Worofile intrinsic(3)]
for (cc, 0, 32) {
Al (((yy*7360) + (xx*32))
}
e rofile intrinsic(3)
}
tir.profile intrinsic(2)
}
Bl rofile intrinsic(1l)
B rofile intrinsic(4)
for (f££, 0, 64) {
ir.profile intrinsic(5)
for (yy., 0, 7) {
B rofile intrinsic(6)
() (xx, 0, 8) {
(cc, 0, 3
7

BL((((£f£*1

t
for
fo 2) {

92) + (yy*256)) + (xx*3
}

}

(Bl rofile intrinsic(6)
}
tir.profile intrinsic(5)

}
Ba-rofile intrinsic(4)

LWP Handler

* By default, profiling builtins are ignored during codegen
* Target specific codegen needs to lower builtin to their handler

* Target needs to provide their own handler implementation

xtern unsigned int* _ lwp buffer ptr;
xtern unsigned int __ lwp buffer size;
xtern unsigned int __ lwp buffer count;

void lwp handler (int id, int ra) {
if (lwp buffer count + 4 > 1lwp buffer size)
return;
__1lwp buffer ptr[1lwp buffer count++] = id; //Unique
__lwp buffer ptr[1lwp buffer count++] = ra; //Return

S W

Example Handler:

8
9

// Record processor cycles

uint64 t cycles = perf get pcycles();

uint32 t cycle hi = (uint32 t) (cycles>>32);
15 uint32 t cycle lo = (uint32 t) cycles;
16 __lwp buffer ptr[1lwp buffer count++] = cycle hi;
17 __lwp buffer ptr[1lwp buffer count++] = cycle lo;
18 }

Challenges

The simple design resulted in LWP buffer overflowing
* Added a secondary buffer which is indexed using the unique ID and is used to keep track of the

execution count
* Reduced logging at a specific call site to first 100 instances

* Information from both buffers is combined offline to calculate total processor cycles for each loop

Basic workflow for LWP

"entries":

"ret " :
" i'd" .

" (LI

cycC

WO O O W=

UL

ret
" i'd" :

" (L

cycC

o

Hexagon Launcher

json file ST

m ild" :
llcycll :

11
12
13
14
15

16

* Uses TVM runtime to run a
model on Hexagon backend

 Contains LWP handler Enable LWP during
implementation

* Writes runtime profiling data
into a json file

" (L

ret
" i'd" :

" (LI

cycC

compilation and generate
model .so

"ret":
n i|dll :

JSON file

LWP Report

Function Name Loop/Function ID | Loop Depth | Start Offset |End Offset|Processor Cycles
tvmgen_default_fused func_ 1 143 - 0x27bf4 0x284a8 1974627519
tvmgen_default_fused func_1 144 0 0x27c94 0x27e88 880392
tvmgen_default_fused func_1 145 1 0x27chb0 0x27e74 847455
tvmgen_default_fused func_1 147 0 0x27e90 0x27f08 436511
tvmgen_default_fused func_1 148 1 Ox27ea8 0x27ef0 328120
tvmgen_default_fused func 1 150 0 0x27f10 0x28168 193345969
tvmgen_default_fused_func_1 151 1 0x27f38 0x28150 193224582
tvmgen_default _fused func_1 155 0 0x28170 0x28454 3976574
tvmgen_default_fused func_1 156 1 0x281b0 0x28418 3973134
tvmgen_default_fused func_2 335 - 0x177d0 0x181b4 651978932
tvmgen_default_fused func_2 336 0 0x17870 Ox17a58 21522853
tvmgen_default_fused_func_2 337 1 0x17880 Ox17a3c 21489046
tvmgen_default_fused func_2 339 0 0x17a60 Ox17af8 49057
tvmgen_default_fused func_2 340 1 Ox17a7c Ox17adc 43719
tvmgen_default_fused func 2 342 0 0x17b00 Ox17e84 628936479
tvmgen_default_fused_func_2 343 1 0x17b30 Ox17e5c 628843016
tvmgen_default_fused func_ 2 347 0 0x17e90 0x18164 1444969
tvmgen_default_fused func_2 348 1 0x17eb0 0x18134 1401827

13

Limitations

* Call to the handler has a potential to affect LLVM optimizations and therefore alter codegen

 Can affect performance of the instrumented code

* Instrumentation of the inner loops should be avoided
 For the outer loops, performance overhead should be minimal, and we should be able to adjust it during processing of

the LWP data if needed.

* Doesn’t work for loops that are parallelized

Future work

* Replace handler calls with LLVM intrinsic to minimize any impact on codegen

* Provide additional compile time config flags

* Better instrumentation control. For example:

o Instrument loops with siblings

o Use loop height as a criteria to limit instrumentation

Qualcomnmw

Thank you

Followuson: f ¥ in
For more information, visit us at:
www.qualcomm.com & www.qualcomm.com/blog

Nothing in these materials is an offer to sell any of the References in this presentation to “Qualcomm” may mean Qualcomm
components or devices referenced herein. Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries
or business units within the Qualcomm corporate structure, as
applicable. Qualcomm Incorporated includes our licensing busine
QTL, and the vast majority of our patent portfolio. Qualcomm
Technologies, Inc., a subsidiary of Qualcomm Incorporated, operates,
along with its subsidiaries, substantially all of our engineering,
research and development functions, and substantially all of our
products and services businesses, including our QCT semiconductor
business.

©2018-2021 Qualcomm Technologies, Inc. and/or its
affiliated companies. All Rights Reserved.

Qualcomm and Hexagon are trademarks or registered
trademarks of Qualcomm Incorporated. Other products
and brand names may be trademarks or registered
trademarks of their respective owners.

