SONAR **Direct Architecture and System Optimization Search**

Elias Jääsaari, Michelle Ma, Ameet Talwalkar, Tiangi Chen

Constrained deployment

Target

Objectives

- Accuracy
- Latency
- Memory consumption
- Energy use
- Number of parameters
- FLOPS
- Fairness
- . . .

The ML pipeline

The ML pipeline

System optimization search

for yo in range(1024 / ty): for xo in range(1024 / tx): C[yo*ty:yo*ty+ty][xo*tx:xo*tx+x] = 0 for k in range(1024): for yi in range(ty): for xi in range(tx): C[yo*ty+yi][xo*tx+xi] += A[k][yo*ty+yi] * B[k][xo*tx+xi]

The ML pipeline

for yo in range(128): for xo in range(128): intrin.fill_zero(C[yo*8:yo*8+8][xo*8:xo*8+8]) for ko in range(128): intrin.fused_gemm8x8_add(C[yo*8:yo*8+8][xo*8:xo*8+8], A[yo*8:yo*8+8][xo*8:xo*8+8], B[yo*8:yo*8+8][xo*8:xo*8+8])

Indirect search

Direct search

It is better to be direct

Efficient direct search

How to perform efficient direct search? Use early stopping!

Early stopping for accuracy

Latency

Corresponding training curves

Training iterations

Early stopping for accuracy

Latency

Training iterations

Early stopping for accuracy

Training iterations

Program evaluations

Early stopping for latency

-atency

Latency

Allocate budget to promising networks

Program evaluations

Accuracy

Program evaluations

Latency

Accuracy

SONAR applies early stopping to both objectives simultaneously

Latency

SONAR finds near optimal models

Budget: 4 days

Latency (ms)

Thank you