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Motivation & Related Work

* The current tuning process is extremely time-consuming...
* Current work can be summarized in two aspects:

Operator Performance

Based on Search

RoofTune -«r-w=ereereccffeneeees » CHAMELEON: RL(reinforcement
- learning) + AS (adaptive sampling)
AdaTune: random forest + coefficient

of variation (CV)

Time Consume

Based on Static Analysis

* Tuna: Parsing high-level program IR
and low-level assembly code



Overall Design of RoofTune

* Cost Model: Manual designed, based on Roofline Model, easily to be deployed

e Search Algorithm: Combined with the cost model, two stage search
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Roofline Model

Roofline Model tells us :
Operational intensity can be used to predict the operator’s performance.

Attainable

Ideas: Per:f(r)?;':ce’P
We introduce Roofline Model to

. . Memo . . Compute
kernel’s level (fine grained): Bound ¢ > Bound
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Cost Model Design Principle

Score = Iy prner X Concurrency

N

kernel’s arithmetic intensity: kernel’s execution concurrency:
Ivernet = Wiernet = Tkernet Concurrency = fc(knob0, knob1, knob?2 ...)

[T,

kernel’s arithmetic amount: kernel’s memory traffic:

Wrernet = fw (knob0, knob1, knob?2 ...) Txerner = fr(knob0, knob1, knob?2 ...)



Conv2d Cost Model Design on GPU

KNOBS IN THE SCHEDULE CONFIG SPACE TO OPTIMIZE CONVOLUTION

KNOBS

DEFINITION Score = Ikernel X Concurrency

tile_f,tile_y,tile_x

tile_rc,tile_ry,tile_rx

auto_unroll_max_step

unroll_explicit

Conv’s data and weight fac- /
tors for tiling and binding ; . .. .
Channels height and width kernel’s arithmetic intensity:

of filters for tiling reduction ) kernel = Wkernel - Tkernel L
axis

Threshold of number of
steps in the loop to be au-
tomatically unrolled
Explicitly unrol

oncurrency(consider blocks in GPU):

blocks =~ (SPs X 3),if blocks < SPs X 3

kernel’s arithmetic amount:

Wierner = [1(f[3], ¥[3], x[3], f

kernel’s memory traffic:

_{1 ,1f blocks > SPs X 3

,y[0], x[1], 7f[0], 1], y[0], ry[1], rx[0], rx[1])

Txerner = data-io + weight-io + out-io

kernel’s data memory traffic:
data-io = data-shape[2] X weight-shape[2] =+ [1(f[2], y[2], x[2], y[0], x[0])



Conv2d Cost Model Design on Huawei NPU

KNOBS IN THE SCHEDULE CONFIG SPACE TO OPTIMIZE CONVOLUTION

DaVinci Core KNOBS DEFINITION

AL1_shape,BL1_shape  Allocate Buffer L1 to
data, weights

ALQ_matrix,BLO_matrix, Allocate Buffer L0 to

AB
DFF

Accum DFF
[
1

CLO_matrix data, weights, outputs
AUB_shape,BUB_shape, Allocate Unified
T l CUB_shape Buffer to data,
TPE FPE [ PP weights, outputs
wector Unit (AL1,BL1,AL0,BLO,CLO, Decide whether to set
Unified Buffer (UB) AUB,BUB,CUB)_pbuffer double buffer at given
every on-chip buffers
g block_dim Conv’s data factors for
tiling and binding on
each AlCore
. — Cube Queue | (A,B)_overhead_opt_flag, Some schedule adjust-
—Fort | Cache .® E | Instr. . - Vechor Queue | n_bef_group_flag, ments_ that are difficult
(73] Dispatc - TE e | n_bef_batch_flag to estimate
AR Score = Il prne; X Concurrency
(L2HBM/DDR) —

kernel’s arithmetic intensity:
Feermer™= Wiernet + Tl@_rnel
kernel’s memory traffic: <—

Tkernel = data-io + weight-io + out-io

/ /kernel s execution concurrency

(consider AlCores nurhber in NPU):
data-lo =datashape = ALO-matrix Concurrency = block_dim

kernel’s arithmetic amount: <
Wierner = out-shape X weight-shape

kernel’s data memory traffic: «—

VU
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Cost Model Offline Validation

Randomly select a large number of configs from the all schedule space

* Y-axis: operator execution time

e X-axis: scores rank from high to low
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RoofTune Two-stage Search Algorithm

First Stage:
To find out the promising scores

Random select | &8sst Rank scores Select one Configs with WlEECUE G
EE——) — config from the | _— —— 2 _
500 configs Oe5a\elels ] from high to low LR different scores device

Schedule Configs Space

Score_list

Select scores from the top 10 actual performance




RAFT based Two-stage searching algorithm

Second Stage:
To limit the schedule space to score_list Score_list

Random select RoofTune SCOres Select scores Measure on

500 configs Cost Model only in score_list device

Schedule Configs Space

Update the best config
and
get the final result
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Search time speedup ratio
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Performance Evaluation
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