RoofTune: Accelerating the Tuning
Process Based on Roofline Model

Hui Zhong, HaiWen Fu, XiaoHua Shi
g, e, SRR

Beihang University

Apache TVM and Open Source ML Acceleration Conference
December 15-17 2021

Motivation & Related Work

* The current tuning process is extremely time-consuming...
* Current work can be summarized in two aspects:

Operator Performance

Based on Search

RoofTune -«r-w=ereereccffeneeees » CHAMELEON: RL(reinforcement
- learning) + AS (adaptive sampling)
AdaTune: random forest + coefficient

of variation (CV)

Time Consume

Based on Static Analysis

* Tuna: Parsing high-level program IR
and low-level assembly code

Overall Design of RoofTune

* Cost Model: Manual designed, based on Roofline Model, easily to be deployed

e Search Algorithm: Combined with the cost model, two stage search

Scedule Template

Generate

knob n-1

knob n

knch n+1

Schedule Configs Space

Machine Learning
Hardware Algorithms
Features

+ Add
: Optionally

Two Stage

Random Select

n Configs Search

Code Generator
And
Hardware
Meaurement

Roofline Model

Roofline Model tells us :
Operational intensity can be used to predict the operator’s performance.

Attainable

Ideas: Per:f(r)?;':ce’P
We introduce Roofline Model to

. . Memo . . Compute
kernel’s level (fine grained): Bound ¢ > Bound

* Operational intensity can be

expressed by some specific LT
ainable
schedule parameters. performane

I Operational

Intensity

IW\@X: TI / B FLOP/Byte

Maximum Memory
Bandwidth
Byte/s

Cost Model Design Principle

Score = Iy prner X Concurrency

N

kernel’s arithmetic intensity: kernel’s execution concurrency:
Ivernet = Wiernet = Tkernet Concurrency = fc(knob0, knob1, knob?2 ...)

[T,

kernel’s arithmetic amount: kernel’s memory traffic:

Wrernet = fw (knob0, knob1, knob?2 ...) Txerner = fr(knob0, knob1, knob?2 ...)

Conv2d Cost Model Design on GPU

KNOBS IN THE SCHEDULE CONFIG SPACE TO OPTIMIZE CONVOLUTION

KNOBS

DEFINITION Score = Ikernel X Concurrency

tile_f,tile_y,tile_x

tile_rc,tile_ry,tile_rx

auto_unroll_max_step

unroll_explicit

Conv’s data and weight fac- /
tors for tiling and binding ;
Channels height and width kernel’s arithmetic intensity:

of filters for tiling reduction) kernel = Wkernel - Tkernel L
axis

Threshold of number of
steps in the loop to be au-
tomatically unrolled
Explicitly unrol

oncurrency(consider blocks in GPU):

blocks =~ (SPs X 3),if blocks < SPs X 3

kernel’s arithmetic amount:

Wierner = [1(f[3], ¥[3], x[3], f

kernel’s memory traffic:

_{1 ,1f blocks > SPs X 3

,y[0], x[1], 7f[0], 1], y[0], ry[1], rx[0], rx[1])

Txerner = data-io + weight-io + out-io

kernel’s data memory traffic:
data-io = data-shape[2] X weight-shape[2] =+ [1(f[2], y[2], x[2], y[0], x[0])

Conv2d Cost Model Design on Huawei NPU

KNOBS IN THE SCHEDULE CONFIG SPACE TO OPTIMIZE CONVOLUTION

DaVinci Core KNOBS DEFINITION

AL1_shape,BL1_shape Allocate Buffer L1 to
data, weights

ALQ_matrix,BLO_matrix, Allocate Buffer L0 to

AB
DFF

Accum DFF
[
1

CLO_matrix data, weights, outputs
AUB_shape,BUB_shape, Allocate Unified
T l CUB_shape Buffer to data,
TPE FPE [PP weights, outputs
wector Unit (AL1,BL1,AL0,BLO,CLO, Decide whether to set
Unified Buffer (UB) AUB,BUB,CUB)_pbuffer double buffer at given
every on-chip buffers
g block_dim Conv’s data factors for
tiling and binding on
each AlCore
. — Cube Queue | (A,B)_overhead_opt_flag, Some schedule adjust-
—Fort | Cache .® E | Instr. . - Vechor Queue | n_bef_group_flag, ments_ that are difficult
(73] Dispatc - TE e | n_bef_batch_flag to estimate
AR Score = Il prne; X Concurrency
(L2HBM/DDR) —

kernel’s arithmetic intensity:
Feermer™= Wiernet + Tl@_rnel
kernel’s memory traffic: <—

Tkernel = data-io + weight-io + out-io

/ /kernel s execution concurrency

(consider AlCores nurhber in NPU):
data-lo =datashape = ALO-matrix Concurrency = block_dim

kernel’s arithmetic amount: <
Wierner = out-shape X weight-shape

kernel’s data memory traffic: «—

VU

Time(ms) / Performance

0.05

0.03 4

0.02 4

0.01 4

0.00 4

Cost Model Offline Validation

Randomly select a large number of configs from the all schedule space

* Y-axis: operator execution time

e X-axis: scores rank from high to low

Cycles in RAFT Score ranks
A Best 1 config
« Top 100 configs

Srsmpe awns ¢ Seed @B o 1

(I) SOIO lOIOO lSIOO 2 OIDO
score rank

GPU

2500

3000

3500

8000

7000

=]
[=}
[=]
o

w
[=])
[=]
[=]

Clock Cycles / Performance

2000

1000 ~

4000 +

Cycles in RAFT Score ranks
A Best1 config
« Top 100 configs

(I) 2560 SDIOO 75I00 10[500
score rank

NPU

12500

15000

T
17500

RoofTune Two-stage Search Algorithm

First Stage:
To find out the promising scores

Random select | &8sst Rank scores Select one Configs with WlEECUE G
EE——) — config from the | _— —— 2 _
500 configs Oe5a\elels] from high to low LR different scores device

Schedule Configs Space

Score_list

Select scores from the top 10 actual performance

RAFT based Two-stage searching algorithm

Second Stage:
To limit the schedule space to score_list Score_list

Random select RoofTune SCOres Select scores Measure on

500 configs Cost Model only in score_list device

Schedule Configs Space

Update the best config
and
get the final result

O P N W & U1 OO N 00 O

O R, N W b U1 O

3. 1x 3. 2X
2. 5X
1.8X

1

Search time speedup ratio

MOBILENET convap Layer GPU = NPU

8X

5.9X 5.7X

4.4X

2 3 4 5 6 7 8 9

End To End Optimization Time

4.83X
i .]
MobileNet VGG-16 ResNet-50
H RoofTune

RoofTune vs XGB on AutoTVM(GPU)

16
14
12
10

o N B O

MOBILENET CONV2D LAYER

14.2X
13.5X 13.2X
12.3X 12.4X
o 10.2X
8.9X 8.7X
I | | | 7.9X
1 2 3 4 5 6 7 8 9 10
End To End Optimization Time
4 12.63X
10.89X
10 744x
G
O -
MobileNet VGG-16 ResNet-50

H RoofTune

RoofTune vs GA on TBE’s AutoTune(NPU)

1.1
1.08
1.06
1.04
1.02

0.98

Performance Evaluation

MOBILENET

1.3X
1.2X 1.2X

1.1X 1.1X
0.96X 0.97X
| 0.76X I | |

™ MobileNet

End To End Performance

1.073X 1.078X
: 013X . .
MobileNet VGG-16 ResNet-50
B RoofTune

RoofTune vs XGB on AutoTVM(GPU)

GPU A NPU

MOBILENET

2.5

2.1X
1.96X

1.75X 1.71X
7 1X 1. 26X
0. 98X
0. 76X 0.8X

N

1.

w1

=

0.

(2]

™ MobileNet

End To End Performance

1.084 1.083X
1.082X

1.082

1.08
1.078X

MobileNet VGG-16 ResNet-50

1.078
1.076

1.074

B RoofTune

RoofTune vs GA on TBE’s AutoTune(NPU)

Acknowledgment

* This work is funded by Huawei Technology.

Ve

HUAWEI

	RoofTune: Accelerating the Tuning Process Based on Roofline Model
	Motivation & Related Work
	Overall Design of RoofTune
	Roofline Model
	Cost Model Design Principle
	Conv2d Cost Model Design on GPU
	Conv2d Cost Model Design on Huawei NPU
	Cost Model Offline Validation
	RoofTune Two-stage Search Algorithm
	RAFT based Two-stage searching algorithm
	Search time speedup ratio
	Performance Evaluation
	Acknowledgment

