
FUZZING TVM RELAY
STEVEN LYUBOMIRSKY, MICHAEL FLANDERS, AND EDWARD MISBACK



Michael Flanders

mkf727@cs.washington.edu

Edward Misback

misback@cs.washington.edu

mailto:mkf727@cs.washington.edu
mailto:misback@cs.washington.edu


WHY DON’T WE HAVE MORE TVM TESTS?

 Test cases are program fragments

 Tedious to write by hand

 Complex interactions between features

 Shapes need to match up

 Fuzzing could help

Lines of code (KSLOC)

Implementation (tvm/src, tvm/python) 233

Tests (tvm/tests) 141

Measurements courtesy of David A. Wheeler’s SLOCCount tool for Linux



RELAY FUZZING APPROACH

 How do we generate Relay programs we know are valid?

 Use typing information: Given a type, generates expression fulfilling it

 We have a prototype! Only ~2000 lines of Python

 Supports most statically typed Relay constructs, ~20 operators



BASIC CASES IN FUZZING RELAY

 Most of Relay’s type system plays nice

 Set goal type and work backwards

 All types have a literal for a base case*

 Connectives (let bindings, etc.) combine existing terms

 Ensuring termination: Fall back to a literal!

*This can get tricky with arbitrary ADTs.



THE TOUGH PART: SOLVING TYPE RELATIONS

 Type system includes constraints on tensor shapes!

 Argument types (shapes) affect result type (shape)

 Every single op has a relation!

 Hardest part: Implemented imperatively in C++



DEALING WITH TYPE RELATIONS: SOLVER-BASED APPROACH

 Encode type relations in a solver domain (e.g., ILP)

 Given return type, use solver to generate valid argument types

 Pro: Only one solver query at a time, easily composable

 Cons: 

 The solver is a dependency

 Need to formalize the type relations in the solver domain



DEALING WITH TYPE RELATIONS: STOCHASTIC APPROACH

 Sample possible inputs, check which solutions work, keep a cache

 Use argument type–return type pairs to guide type generation

 Pro: Can reuse existing type relation implementations, no solver

 Con: Not as flexible as solver-based approach



BUGS FOUND

 Match exhaustion bug: 

 Found by fuzzer very quickly in small-scale test runs

 Fix merged https://github.com/apache/tvm/pull/7459

 Missing bounds check in bias add specification: 

 Found manually while formalizing the type relation

 Fix merged https://github.com/apache/tvm/pull/7554

 Also found a bug parsing refs of refs (fix not yet PR’d)

https://github.com/apache/tvm/pull/7459
https://github.com/apache/tvm/pull/7554


GENERATED PROGRAM SIZES

Type-Directed Grammar-Based



GENERATED PROGRAM SIZES

Type-Directed Grammar-Based

Almost none of 

these type checks!



(SOME OF THE TRIVIAL CASES THAT DID TYPE CHECK)

def @main() -> () { match? 75 {}}

def @main() -> () {()}

def @main() -> () { match? (((),)) {}}

def @main() -> () { %793 = 8 ; ()}

def @main() -> uint16 { match? () {}}



GENERATION SPEED



THE FUTURE OF THE FUZZER

 Prototype available at: https://github.com/slyubomirsky/relay_fuzzer

 Will create a TVM RFC for discussing the future of fuzzing

 Questions for the future:

 How can we support dynamic or parametric shapes?

 What testing oracles make the most sense to use?

 How should we express constraints on generated programs?

 What about mutating and minimizing Relay programs for bug reports?

https://github.com/slyubomirsky/relay_fuzzer


THANK YOU!


