
FUZZING TVM RELAY
STEVEN LYUBOMIRSKY, MICHAEL FLANDERS, AND EDWARD MISBACK



Michael Flanders

mkf727@cs.washington.edu

Edward Misback

misback@cs.washington.edu

mailto:mkf727@cs.washington.edu
mailto:misback@cs.washington.edu


WHY DON’T WE HAVE MORE TVM TESTS?

 Test cases are program fragments

 Tedious to write by hand

 Complex interactions between features

 Shapes need to match up

 Fuzzing could help

Lines of code (KSLOC)

Implementation (tvm/src, tvm/python) 233

Tests (tvm/tests) 141

Measurements courtesy of David A. Wheeler’s SLOCCount tool for Linux



RELAY FUZZING APPROACH

 How do we generate Relay programs we know are valid?

 Use typing information: Given a type, generates expression fulfilling it

 We have a prototype! Only ~2000 lines of Python

 Supports most statically typed Relay constructs, ~20 operators



BASIC CASES IN FUZZING RELAY

 Most of Relay’s type system plays nice

 Set goal type and work backwards

 All types have a literal for a base case*

 Connectives (let bindings, etc.) combine existing terms

 Ensuring termination: Fall back to a literal!

*This can get tricky with arbitrary ADTs.



THE TOUGH PART: SOLVING TYPE RELATIONS

 Type system includes constraints on tensor shapes!

 Argument types (shapes) affect result type (shape)

 Every single op has a relation!

 Hardest part: Implemented imperatively in C++



DEALING WITH TYPE RELATIONS: SOLVER-BASED APPROACH

 Encode type relations in a solver domain (e.g., ILP)

 Given return type, use solver to generate valid argument types

 Pro: Only one solver query at a time, easily composable

 Cons: 

 The solver is a dependency

 Need to formalize the type relations in the solver domain



DEALING WITH TYPE RELATIONS: STOCHASTIC APPROACH

 Sample possible inputs, check which solutions work, keep a cache

 Use argument type–return type pairs to guide type generation

 Pro: Can reuse existing type relation implementations, no solver

 Con: Not as flexible as solver-based approach



BUGS FOUND

 Match exhaustion bug: 

 Found by fuzzer very quickly in small-scale test runs

 Fix merged https://github.com/apache/tvm/pull/7459

 Missing bounds check in bias add specification: 

 Found manually while formalizing the type relation

 Fix merged https://github.com/apache/tvm/pull/7554

 Also found a bug parsing refs of refs (fix not yet PR’d)

https://github.com/apache/tvm/pull/7459
https://github.com/apache/tvm/pull/7554


GENERATED PROGRAM SIZES

Type-Directed Grammar-Based



GENERATED PROGRAM SIZES

Type-Directed Grammar-Based

Almost none of 

these type checks!



(SOME OF THE TRIVIAL CASES THAT DID TYPE CHECK)

def @main() -> () { match? 75 {}}

def @main() -> () {()}

def @main() -> () { match? (((),)) {}}

def @main() -> () { %793 = 8 ; ()}

def @main() -> uint16 { match? () {}}



GENERATION SPEED



THE FUTURE OF THE FUZZER

 Prototype available at: https://github.com/slyubomirsky/relay_fuzzer

 Will create a TVM RFC for discussing the future of fuzzing

 Questions for the future:

 How can we support dynamic or parametric shapes?

 What testing oracles make the most sense to use?

 How should we express constraints on generated programs?

 What about mutating and minimizing Relay programs for bug reports?

https://github.com/slyubomirsky/relay_fuzzer


THANK YOU!


