
Tsunami: Training in TVM with Relay

Altan Haan
MLSys @ OctoML

TVMCon 2021 Lightning Talk



Current status of TVM training in main

● Gradient coverage for operators
○ Still missing some, but steadily improving in main

● Automatic differentiation (AD) robustness
○ graph AD is now fairly stable

● No framework to handle the “high-level” training features
○ Parameters (initialization, tracking, updating)

○ Training optimizers (SGD, ADAM, etc.)

○ Model definitions (with parameter tracking, serialization)

○ We could try using another framework to handle these, but integration with TVM is tricky (see 

e.g. https://lernapparat.de/transformers-pytorch-tvm/) 

2

https://lernapparat.de/transformers-pytorch-tvm/


Current status of TVM training in main

● Gradient coverage for operators
○ Still missing some, but steadily improving in main

● Automatic differentiation (AD) robustness
○ graph AD is now fairly stable

● No framework to handle the “high-level” training features
○ Parameters (initialization, tracking, updating)

○ Training optimizers (SGD, ADAM, etc.)

○ Model definitions (with parameter tracking, serialization)

○ We could try using another framework to handle these, but integration with TVM is tricky (see 

e.g. https://lernapparat.de/transformers-pytorch-tvm/) 

3

https://lernapparat.de/transformers-pytorch-tvm/


● Provides a modular API for defining models, based off of established training 

framework principles (e.g. PyTorch’s nn.Module)

● Tracks parameters for models, handling initialization and weight updates

● Provides training optimizers

● All computations (model layers, optimizer updates for weights and internal 

state) are written in Relay

● Backward graph construction is handled behind the scenes, with a simple 

user-facing API for running a training step

Tsunami: a simple TVM training framework

4



Example code: Module

5

sub-module
Trainable parameter 
(init to 0)

Builds a 
Relay 
expression



Example code: Optimizer

6



Example code: Optimizer

7



8

Putting it all together
Compile and initialize the model:

Train the model:

Inline the optimizer 
computation



Currently we take a simple approach:

● Transform FP32 GEMMs to FP16 input -> FP32 output mixed precision GEMMs
● Insert FP16 casts before GEMM calls
● Scale the loss value by a given scaling factor (in case of dynamic range issues)
● Scale gradients by inverse of loss scale before performing weight update

This approach is easily realized as a Relay transformation pass in ~50 LOC Python

Possible future extensions:

● FP16 support for more ops
● Cast and keep majority of graph in FP16, cast back for numerically sensitive ops
● Try using FP16 -> FP16 GEMMs

Mixed Precision Training

9



Case study: BERT and DLRM

10



Case study: BERT and DLRM

11



Case study: BERT and DLRM

12



● Stateful operators like batch norm and dropout

● In-place operations like sparse embedding weight updates in DLRM

● Dynamic shape support (most commonly dynamic batch size)

● Non-graph model support

● Check out the ongoing work on Relax, which aims to address these limitations 

of Relay.

Limitations & Future Work

13



Thanks to my OctoML collaborators: Tianqi Chen, Tristan Konolige, Wuwei Lin, Thierry 

Moreau, Jared Roesch, Junru Shao, Chris Sullivan, Bing Xu (now at FB).

This work was done in partnership with Michiel Vermeulen at AMD - we thank them for 

their support!

Acknowledgements

14



Thank you!


