TVM Streamer - Accelerating multimedia framework with TVM

Cecilia Albertsson¹
Hiroki Endoh²
Shinya Kaji¹

¹ Fixstars Corporation, ²NTT TechnoCross Corporation

Agenda

- Our Challenges
 - Business needs for a high-performance video streaming system

- TVM Streamer Overview
 - Accelerating inference for video stream processing

- Benchmark Results
 - Performance comparison for 4K and HD video streams

Future Work

Our Challenges

Background

- Growing demand for intelligence video analytics.
- NTT needs a high-performance video streaming system that can efficiently process large amounts of data such as 4K video.
- We employ a variety of vendor-neutral and high-performance devices.

Motivation

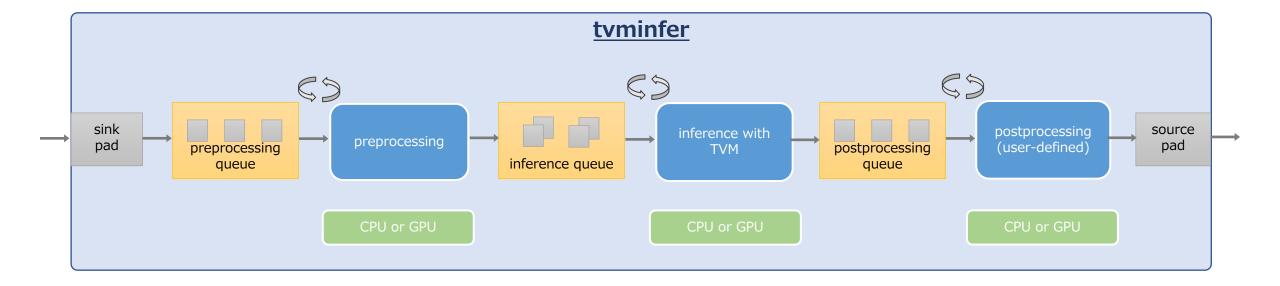
• TVM has the versatility and potential to satisfy our requirements, but we know of no video streaming system with TVM that meets the above expectations.

Proposal

 Implement an inference application using TVM in GStreamer, a framework for multimedia processing.

TVM Streamer Overview

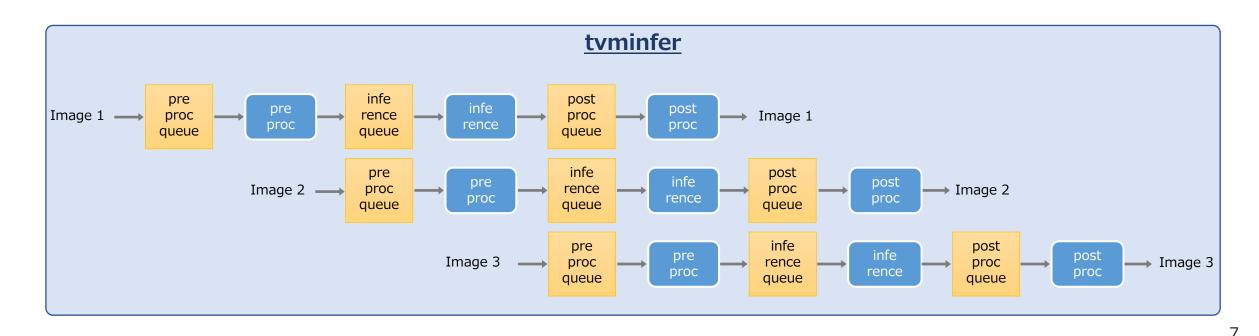
- TVM Streamer is implemented as a filter-type GStreamer plugin called tvminfer
- tvminfer implements image processing including inference
 with TVM
- tvminfer executes image processing on CPU and GPU
- Current support:
 - x86_64 and ARM64 CPUs
 - NVIDIA Jetson TX2, NVIDIA Tesla T4, and NVIDIA A100 GPUs
 - Single input layer DNN models in pre-compiled TVM format


TVM Streamer Processing

- TVM Streamer applies the following processing to images in a video stream:
 - Preprocessing: resizing, batching etc.
 - Inference: loads and runs pre-compiled model in TVM
 - **Postprocessing**: can be anything, supplied as a function that receives an image and the associated inference results
- Parameters for preprocessing and inference may be tweaked via properties passed to tyminfer

TVM Streamer Structure

- TVM Streamer employs a system of queues to pass images between processing stages
- Each processing stage runs in a separate thread



TVM Streamer Concurrency

- TVM Streamer exploits CPU-side multithreading and GPUside CUDA streams to optimize concurrency
 - Processing of each image overlaps with that of the previous image, saving time

Benchmark Results

- We compared performance results of TVM Streamer to those of DL Streamer (for CPU) and DeepStream SDK (for GPU)
 - DL Streamer: inference with Intel OpenVINO
 - DeepStream SDK: inference with NVIDIA TensorRT
- We used GStreamer pipelines that reproduce, as closely as possible, the same processing for each framework
- We measured latency, throughput, and power efficiency
- We used AutoTVM to tune models for the TVM Streamer benchmarks

Result:

TVM Streamer exhibits significantly higher performance than DeepStream SDK in some cases

Benchmarks x86_64 CPU

• Comparison between TVM Streamer and DL Streamer on x86_64 CPU

Model	Resolution	Latency (msec)		Throughput (FPS)		Power efficiency (FPS/average Watts)	
		TVM Streamer	DL Streamer	TVM Streamer	DL Streamer	TVM Streamer	DL Streamer
mobilenetv3_large (224x224)	4K	9.33	10.41	107.24	96.06	0.27	0.35
	HD	1.98	1.19	506.29	841.90	1.55	3.54
yolo3_darknet53_coco (416x416)	4K	57.70	20.27	17.33	49.33	0.05	0.09
	HD	57.96	18.60	17.25	53.77	0.05	0.09

Benchmarks NVIDIA Tesla T4

 Comparison between TVM Streamer and DeepStream SDK on NVIDIA Tesla T4

Model	Resolution	Latency (msec)		Throughput (FPS)		Power efficiency (FPS/average Watts)	
		TVM Streamer	DeepStream SDK	TVM Streamer	DeepStream SDK	TVM Streamer	DeepStream SDK
mobilenetv3_large (224x224)	4K	5.60	11.36	178.55	88.01	0.59	0.30
	HD	0.98	1.75	1016.42	573.05	3.76	2.23
yolo3_darknet53_coco (416x416)	4K	19.99	18.72	50.03	53.41	0.17	0.18
	HD	20.24	19.18	49.41	52.15	0.16	0.20

Benchmarks NVIDIA Jetson TX2

- Comparison between TVM Streamer and DeepStream SDK on NVIDIA Jetson TX2
 - We did not measure power efficiency on Jetson TX2

Model	Resolution	Latency (msec)		Throughput (FPS)		
		TVM Streamer	DeepStream SDK	TVM Streamer	DeepStream SDK	
mobilenetv3_large (224x224)	4K ^(*1)	20.30	N/A	49.25	N/A	
	HD	7.18	7.81	139.22	128.02	
yolo3_darknet53_coco (416x416)	4K	225.64	175.15	4.43	5.71	
	HD	222.41	166.86	4.50	5.99	

^{*1:} DeepStream SDK does not support input/model resolution ratios in excess of a factor of 16 on NVIDIA Jetson TX2

Future Work

- Additional benchmarks
- Support for edge devices
 - E.g., Google TPU, Qualcomm Snapdragon
- Adding useful functions related to inference processing

Thank you!

