
Franck Slama

Senior Engineer
Qualcomm Technologies, Inc.

TVM 2021 - virtual confDec 16, 2021 @qualcomm

Common Subexpression 
Elimination for TIR



2

2.63

• 1 – Reminder about TIR (Tensor Intermediate Representation) structure

• 2 - The problem of redundant computations in TIR

• 3 - Removing redundant computations by CSE

• 4 – Relying on the SSA form

• 5 – Algorithm and data-structures

• 6 – Degrees of freedom

• 7 – Semantics preservation with CSE

• 8 – Extension : from syntactical to semantical comparisons

• 9 – Results and conclusion

Agenda



3

1 - Reminder about TIR structure

• TIR is one of the two unified IR that TVM has
• Relay is the highest-level IR. It’s a functional language

• TIR is lower-level. A TIR program will represent a layer (often called an op)

• Inductive/recursive definitions of expressions and statements in TIR
• For instance : An IF statement contains a statement for the then branch and another statement for the else branch

• If(expr) Then stmt1 Else stmt2;

a Stmt



4

1 - Reminder about TIR structure

• TIR has both some functional traits and some imperatives traits
• It has let-in bindings, just like a functional language:

• Let var = Expr in Expr Ex : Let x = 1 in x+1

an Expr

• But it also has statements like an imperative language:

• In particular, it has a construction for a Sequence of statements: 

• S1; S2; …; Sn Ex : Mem[i1] = 1; Mem[i2] = 2; …

a Stmt

• So of course let-in bindings can also be Statements:

• Let var = Expr in Stmt Ex : Let x = 5 in Mem[i1] = x

a Stmt



5

2 - The problem of redundant computations in TIR (1/2)

• TIR code is automatically generated
• Therefore, it often contains redundant computations (for many passes it is easier to produce TIR code naively with these 

redundancies rather than eliminating them while performing some other work)

• The CSE pass in the LLVM backend will take care of some redundancies, but not all of them

• These re-computations are using computer power for nothing

• Which in turns makes the output code less energy efficient…

• Example on real TIR code (thanks to contributor @wrongtest on Github):

• Duplicate index computations produced by loop unroll

• Needs to rely on target backends abilities which may or may not optimize them out!



6Qualcomm Hexagon is a product of Qualcomm Technologies, Inc. and/or its subsidiaries.

2 - The problem of redundant computations in TIR (2/2)

• At Qualcomm Technologies, Inc., we want to make the compiled code run as fast 

as possible, while using as little energy as possible
• Using many architecture-dependent optimizations, that use Qualcomm® Hexagon™ DSP capabilities (a family of DSP 

found in many devices, from smartphones to cars).

• But also using architecture independent optimizations, like removing redundant computations!

• So we wanted to have a TIR pass for removing these redundant computations : a 

Common Subexpression Elimination (CSE) optimization pass



7

3 - Removing redundant computations by CSE

• What we want this pass to do:
• To avoid re-computations of expressions and sub-expressions

• By introducing the redundant computations into new variables before the first occurrence

• And replacing all the occurrences of the sub-expression by the new variables

• For instance
The previous TIR chunk :

A[i*256 + j*16 + 0] = B[i*256 + j*16 + 4096]

A[i*256 + j*16 + 1] = B[i*256 + j*16 + 4097]

...

Should be transformed into :     CSE pass

Let cse_var_1 = i*256 + j*16 in

A[cse_var_1 + 0] = B[cse_var_1 + 4096]

A[cse_var_1 + 1] = B[cse_var_1 + 4097]

...

• Note : Not only working on full expr, but sub-expressions too (i*256 + j*16 here)!



8

4 – Relying on the SSA form

• The general idea is, within a function, to look for identical subexpressions, and to 

replace them by new variables, that will be introduced before the first occurrence.

• Question : What if variables change in the meantime?
• … i*256 + j*16 …;

• i = 0;

• … i*256 + j*16 …;

• It won’t happen! TIR code must always be in SSA (Static Single Assignment) 

form
• The SSA form implemented in TVM is in fact a little bit more flexible than pure SSA, but the idea is the same : a variable 

won’t see its content change

• That is great for the CSE pass, as is removes the need to pay attention to variables changing content 

(otherwise, we could not common out i*256 + j*16 if `i` could be updated between the different occurrences)



9

5 – Algorithm and data-structures (1/15)

• Take the root of the AST as input. Look at the eligible computations that it 

computes that can be introduced into a variable. Common them by introducing 

them into new variable and perform the replacements. (… to be continued…)

• Definition 1: A computation is eligible if and only if:
• It is not an atom (there’s no point in commoning them into new variables)

• It is not constant

• It is not a variable

• It is not a forbidden computation (commoning them would change the program’s semantics)

• It is not a function call

• It is not a memory load

• It does not contain a forbidden computation (see above)

The general idea (1/2)



10

5 – Algorithm and data-structures (2/15)

• Take the root of the AST as input. Look at the eligible computations that it 

computes that can be introduced into a variable. Common them by introducing 

them into new variable and perform the replacements. (… to be continued…)

• Definition 2: An eligible computation can be introduced if and only if:
• All the variables it uses are in scope at this point

• It appears “often enough” (currently if nb_times_seen > 2 but this test could become more finer grained by taking into 

account its length)

• Then, continue to apply the same treatment recursively on the child nodes, 

because some computations that could not be introduce at the current level might 

become doable in the children node, when the variables that they use become all 

in scope.

The general idea (2/2)



11

5 – Algorithm and data-structures (3/15)

• In order to know if a variable is within scope or not, we will use a context

• This context will associate variables in scope to an optional expression
• Context = std::vector<std::pair<Var, MaybeValue>>;

• Why optional? Because some variables don’t have a fixed value
• Parameters of functions don’t have a fixed value

• Counters of « For » Loops will see their value change

• When we encounter nodes that declare new variables, we will extend our context
• « Let » nodes (both the expression and the statement) explicitly declare new variables

• « For » nodes declare a counter that we need to add to the context as we want to be able to do commoning on 

expressions that use the counter

• The context will serve two purposes:
• Knowing which variable are in scope at the moment

• Knowing if a given expression already exists in an already defined variable

Data-structures used (1/2) : Context



12

5 – Algorithm and data-structures (4/15)

• Reminder : Take the root of the AST as input. Look at the eligible computations

that it computes that can be introduced into a variable. (…)
→ Need a data-structure for computing and storing the “computations done by a node”

• This data-structure, that we call a table of computations, is a hashtable which 

maps PrimExpr to integers
• TableOfComputations = std::unordered_map<PrimExpr, size_t, ObjectPtrHash, ObjectPtrEqual>;

• The integer is the number of time the given computation has been seen

• When we encounter a PrimExpr, it is efficient to update (or add) the entry in the 

table

Data-structures used (2/2) : Table of computations



13

5 – Algorithm and data-structures (5/15)

• Reminder : Take the root of the AST as input. Look at the eligible computations

that it computes that can be introduced into a variable. (…)

• What to do with an eligible computation that can not be introduced into a 

variable? (either because it uses variables not yet within scope, or because it is 

not seen enough)

• Answer : consider its (eligible) direct subexpressions

• For instance:
If (w+x)*(y+z) is eligible but can’t be introduced (for instance because ‘z’ is not within scope yet), consider (w+x) and (y+z) 

The algorithm (1/11)



14

5 – Algorithm and data-structures (6/15)

• Input:
• With an initial context : [a, b, d, e, f]

The algorithm (2/11)

a+b c+d
c+d

Node

2
Node 

3

e*f

Let 

c=Exp

root

Node 

1

50 a+b



15

5 – Algorithm and data-structures (7/15)

• 1 : Look at the eligible computations done by the current root, i.e. done by all the 

children of the root. This builds the table of computations.
• Context : [a, b, d, e, f]

• Table of computation : 

[a+b : 2, c+d : 2, e*f : 1]

• Note:
• 50 is not eligible (a constant)

The algorithm (3/11)

a+b c+d
a+bc+d

Node

2
Node 

3

e*f

Let 

c=Exp

root

Node 

1

50



16

5 – Algorithm and data-structures (8/15)

• 2 – Considering each computation from the biggest to the smallest in size (not in 

number of time seen!), look if it can be introduced

• Currently looking at a+b
• Context : [a, b, d, e, f]

• Table of computation : [a+b : 2, c+d : 2, e*f : 1]

• Answer:
Yes (a+b) can be introduced

(it only contains variables within

scope, and it is seen often enough)

The algorithm (4/11)

a+b c+d
a+bc+d

Node

2
Node 

3

e*f

Let 

c=Exp

root

Node 

1

50



17

5 – Algorithm and data-structures (9/15)

• Actions:
Create new variable for (a+b) and perform

replacements

The algorithm (5/11)

cse_1 c+d
cse_1

Node

2
Node 

3

e*f

Let 

c=Exp

root

Node 

1

50

Let cse_1

= a+b

c+d



18

5 – Algorithm and data-structures (10/15)

• Currently looking at c+d
• Context : [a, b, d, e, f]

• Table of computation : [a+b : 2, c+d : 2, e*f : 1]

• Answer:
No (c+d) can not be introduced

as ‘c’ is not in the context (i.e, not

within scope yet)

• Actions:
• Adding its eligible direct-subexpressions

to the table of computations. There are none

as ‘c’ and ‘d’ are not eligible (variables)

The algorithm (6/11)

cse_1
cse_1 c+d

Node

2
Node 

3

e*f

Let 

c=Exp

root

Node 

1

50

Let cse_1

= a+b

c+d



19

5 – Algorithm and data-structures (11/15)

• Currently looking at e*f
• Context : [a, b, d, e, f]

• Table of computation : [a+b : 2, c+d : 2, e*f : 1]

• Answer:
No (e*f) can not be introduced

because it is not seen enough

• Actions:
• Adding its eligible direct-subexpressions

to the table of computations. There are none

as ‘e’ and ‘f’ are not eligible (variables)

The algorithm (7/11)

cse_1
cse_1 c+d

Node

2
Node 

3

e*f

Let 

c=Exp

root

Node 

1

50

Let cse_1

= a+b

c+d



20

5 – Algorithm and data-structures (12/15)

• 3 – Continue recursively
• This is a Let node, extend the context

• Context : [c, a, b, d, e, f]

• 1 – Compute the table of computations:
[c+d : 2, e*f : 1]

The algorithm (8/11)

cse_1
cse_1 c+d

c+d

Node

2
Node 

3

e*f

Let 

c=Exp

root

Node 

1

50

Let cse_1

= a+b



21

5 – Algorithm and data-structures (13/15)

• 2 – Considering each computation…

• Currently looking at c+d
• Context : [c, a, b, d, e, f]

• Table of computation : [c+d : 2, e*f : 1]

• Answer:
Yes (c+d) can be introduced

(it only contains variables within

scope, and it is seen enough)

The algorithm (9/11)

cse_1
cse_1 c+d

c+d

Node

2
Node 

3

e*f

Let 

c=Exp

root

Node 

1

50

Let cse_1

= a+b



22

5 – Algorithm and data-structures (14/15)

• Actions :
Create new variable for (c+d) and perform

replacements

The algorithm (10/11)

cse_1
cse_1 cse_2

cse_2

Node

2
Node 

3

e*f

Let 

c=Exp

root

Node 

1

50

Let cse_1

= a+b

Let cse_2

= c+d



23

5 – Algorithm and data-structures (15/15)

• It won’t do anything for the

computation e*f

• …

• Output:

The algorithm (11/11)

cse_1
cse_1 cse_2

cse_2

Node

2
Node 

3

e*f

Let 

c=Exp

root

Node 

1

50

Let cse_1

= a+b

Let cse_2

= c+d



24

6 – Degrees of freedom

• Often, multiple different choices could have be made as to what to introduce in a 

new variable.

• Starting by introducing the bigger redundant terms first is better:
Let bigComp = … in

Stmt

• The smaller common subterms will be introduced later-on in another Let (i.e. 

further outside). That will maximize the amount of terms that are put in common
Let smallComp = … in

Let bigComp = … in

Stmt

• That’s the reason why we considered the eligible computations from bigger to 

smaller in the main loop of the algorithm



25

7 – Semantics preservation with CSE (1/3)

When performing CSE on an IR with imperative traits, one has to be careful with 

memory loads and function calls

• It’s possible to load two times from the same buffer at the same location, and to 

obtain different values. That could happen if something has been written between 

the two loads
• X = Mem[i1]+42; … … …; Mem[i1] = newValue; … … …; Y = Mem[i1]+42

→ We can’t perform commoning on the redundant expression Mem[i1]+42 !



26

7 – Semantics preservation with CSE (2/3)

When performing CSE on an IR with imperative traits, one has to be careful with 

memory loads and function calls

• Two identical function calls f(x) are not guaranteed to evaluate to same value : f 

might perform side-effect, leading to a function that might compute different result 

for the same input
→The CSE pass should not do commoning on the program:

f(10);

…

…

f(10)

• This condition could be relaxed a little bit in the future by relying on a tag “isPure”. 

Calls to a pure function could be commoned out



27

7 – Semantics preservation with CSE (3/3)

• As for any compiler pass, preserving the semantics of the program is crucial!

• Semantics preservation for CSE:

Consider a TIR program P that has a redundant computation comp:

P = Prog(… comp … comp … comp …)

which previously evaluated to the value val: P → val

If comp is pure (i.e, does not perform any side effect), then

After the CSE pass, which leads to 

P’ = Let cse_var = comp in Prog(… var … var … var)

it will still evaluate to the same value val: P’ → val



28

8 – Extension : from syntactical to semantical comparisons

• Instead of eliminating only duplicated expressions that are syntactically the same, 

it’s possible to easily extend the infrastructure of the CSE pass for dealing with 

any semantical comparison (i.e, any equivalence relation on terms)

• One could for instance consider to identify expressions modulo commutativity 

(identifying for instance (x+y) with (y+x)), modulo associativity (identifying for 

instance (x+y)+z with x+(y+z)), etc
• That would allow to common-out even more

• Replacing just a single function will be the only thing needed in order to do that:
• bool EquivalentTerms(const PrimExpr& a, const PrimExpr& b)

• Typical way to implement such extensions would be to compute a canonical representant of ‘a’ and a canonical 

representant of ‘b’ and to then compare them with the strict syntactical equality 



29

9 – Results and conclusion (1/3)

On a handwritten program:

• This handwritten program is a unit test of the pass

Results



30

Example of 
output 
program after 
CSE on a real 
layer

- New variables introduced automatically in purple
- Occurrences replaced are in blue

- Declarations of the new variables introduced by the CSE pass are in purple
- Occurrences replaced are in blue



31

9 – Results and conclusion (3/3)

• We have implemented a CSE pass for TIR which simplifies many programs and 

which makes them run faster, independently of any hardware consideration

• The CSE pass implemented is very generic and customizable (one can easily

change the predicate that decides if a computation should be introduced into a 

new variable)

• It can easily be extended to deal with any equivalence relation between terms

instead of just the syntactical equality
• it can probably even serve as a common infrastructure for performing value numbering optimizations

Conclusion



32

Acknowledgments

• Many thanks to the whole Qualcomm® TVM team and in particular to Krzysztof 

Parzyszek and Jyotsna Verma for their feedback and for encouraging me to 

upstream this new TIR pass.

• Thanks to @wrongtest on the Github repository for the example he wanted to see

simplified by the CSE pass.

• Thanks to the entire TVM community in general for your work on such a great

product!
Qualcomm TVM is a product of Qualcomm Technologies, Inc. and/or its subsidiaries.



Follow us on:

For more information, visit us at:

www.qualcomm.com & www.qualcomm.com/blog

Thank you

Nothing in these materials is an offer to sell any of the 

components or devices referenced herein.

©2018-2021 Qualcomm Technologies, Inc. and/or its 

affiliated companies. All Rights Reserved.

Qualcomm and Hexagon are trademarks or registered 

trademarks of Qualcomm Incorporated. Other products 

and brand names may be trademarks or registered 

trademarks of their respective owners.

References in this presentation to “Qualcomm” may mean Qualcomm 

Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries 

or business units within the Qualcomm corporate structure, as 

applicable. Qualcomm Incorporated includes our licensing business, 

QTL, and the vast majority of our patent portfolio. Qualcomm 

Technologies, Inc., a subsidiary of Qualcomm Incorporated, operates, 

along with its subsidiaries, substantially all of our engineering, 

research and development functions, and substantially all of our 

products and services businesses, including our QCT semiconductor 

business.


