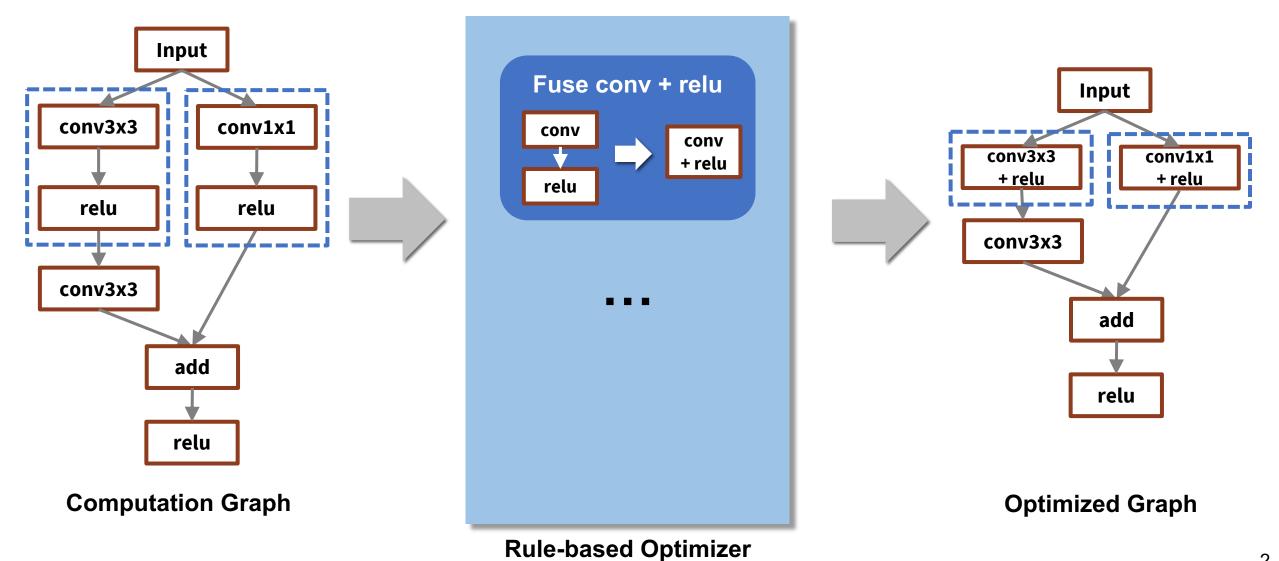
TASO: Optimizing Deep Learning with Automatic Generation of Graph Substitutions

Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and Alex Aiken

Stanford University

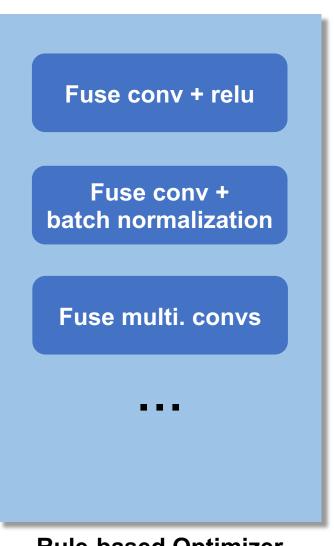
SOSP'19

Current Rule-based DNN Optimizations



Current Rule-based DNN Optimizations

TensorFlow currently includes ~200 rules (~53,000 LOC)

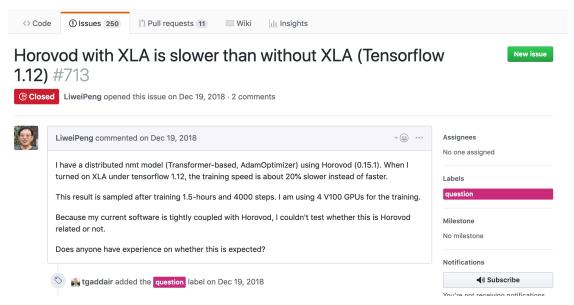


Rule-based Optimizer

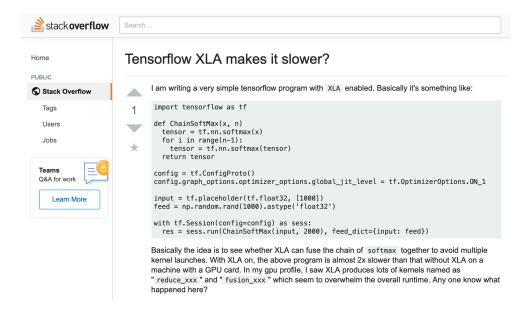
```
namespace tensorflow {
namespace graph_transforms {
// Converts Conv2D or MatMul ops followed by column-wise Muls into equivalent
// ops with the Mul baked into the convolution weights, to save computation
Status FoldBatchNorms(const GraphDef& input_graph_def,
                       const TransformFuncContext& context,
                       GraphDef* output_graph_def) {
  GraphDef replaced_graph_def;
  TF_RETURN_IF_ERROR(ReplaceMatchingOpTypes(
      input_graph_def, // clang-format off
           {"Conv2D|MatMul|DepthwiseConv2dNative", // conv_node
               {"Const"},
                              // weights_node
           {"Const"},
                               // mul_values_node
          // clang-format on
      }, // clang-format on
[](const NodeMatch& match, const std::set<string>& input_nodes,
         const std::set<string>& output_nodes,
        std::vector<NodeDef>* new_nodes) {
// Find all the nodes we expect in the subgraph.
        const NodeDef& mul_node = match.node;
        const NodeDef& conv_node = match.inputs[0].node;
        const NodeDef& input_node = match.inputs[0].inputs[0].node;
        const NodeDef& weights_node = match.inputs[0].inputs[1].node;
        const NodeDef& mul_values_node = match.inputs[1].node;
         // Check that nodes that we use are not used somewhere else.
         for (const auto& node : {conv_node, weights_node, mul_values_node}) {
          if (output_nodes.count(node.name()))
             // Return original nodes.
             new_nodes->insert(new_nodes->end(),
                                {mul_node, conv_node, input_node, weights_node,
                                 mul_values_node});
             return Status::OK();
         Tensor weights = GetNodeTensorAttr(weights_node, "value");
        Tensor mul_values = GetNodeTensorAttr(mul_values_node, "value");
         // Make sure all the inputs really are vectors, with as many entries as
         // there are columns in the weights.
         int64 weights_cols;
         if (conv_node.op() == "Conv2D") {
          weights_cols = weights.shape().dim_size(3);
         } else if (conv_node.op() == "DepthwiseConv2dNative") {
               weights.shape().dim_size(2) * weights.shape().dim_size(3);
          weights_cols = weights.shape().dim_size(1);
        if ((mul_values.shape().dims() != 1) ||
   (mul_values.shape().dim_size(0) != weights_cols)) {
           return errors::InvalidArgument(
               "Mul constant input to batch norm has bad shape: ",
               mul_values.shape().DebugString());
        // Multiply the original weights by the scale vector.
auto weights_vector = weights.flat<float>();
         Tensor scaled weights(DT FLOAT, weights.shape());
         auto scaled weights vector = scaled weights.flat<float>();
         for (int64 row = 0; row < weights_vector.dimension(0); ++row) {</pre>
          scaled_weights_vector(row) =
               weights_vector(row) *
               mul_values.flat<float>()(row % weights_cols);
        NodeDef scaled_weights_node;
         scaled_weights_node.set_op("Const");
         scaled_weights_node.set_name(weights_node.name());
         SetNodeAttr("dtype", DT_FLOAT, &scaled_weights_node);
         SetNodeTensorAttr<float>("value", scaled_weights, &scaled_weights_node);
         new_nodes->push_back(scaled_weights_node);
         new_nodes->push_back(input_node);
        NodeDef new_conv_node;
         new_conv_node = conv_node;
        new_conv_node.set_name(mul_node.name());
new_nodes->push_back(new_conv_node);
         return Status::OK();
 {}, &replaced_graph_def));
*output_graph_def = replaced_graph_def;
  return Status::OK():
REGISTER_GRAPH_TRANSFORM("fold_batch_norms", FoldBatchNorms);
 // namespace graph transforms
   // namespace tensorflow
```

Robustness

Experts' heuristics do not apply to all DNNs/hardware



When I turned on XLA (TensorFlow's graph optimizer), the training speed is **about 20% slower**.



With XLA, my program is **almost 2x slower than** without XLA

Robustness

Experts' heuristics do not apply to all DNNs/hardware

Scalability

New operators and graph structures require more rules

TensorFlow currently uses ~4K LOC to optimize convolution

Robustness

Experts' heuristics do not apply to all DNNs/hardware

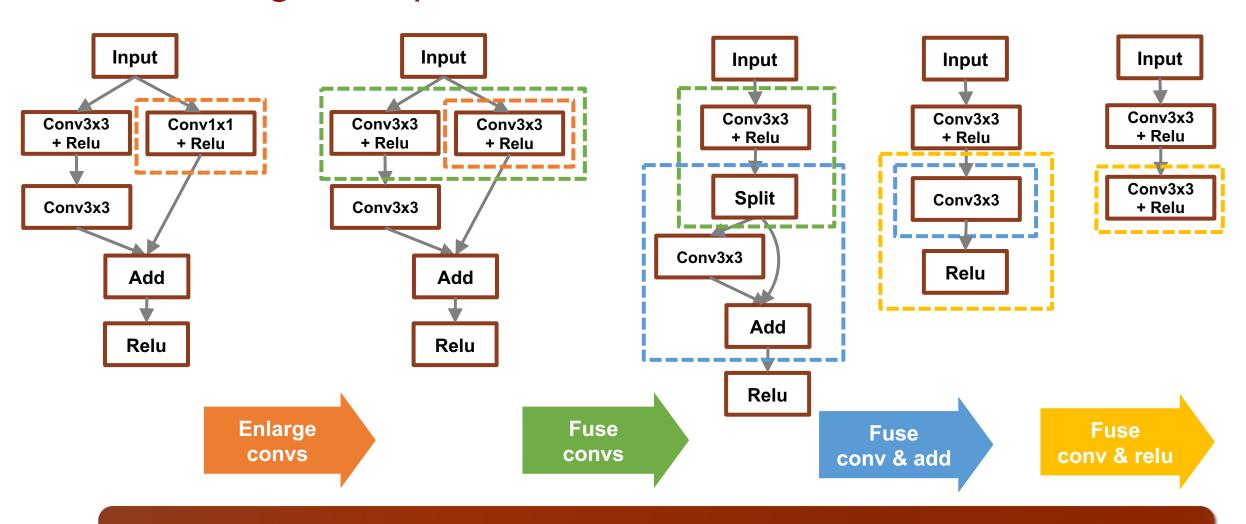
Scalability

New operators and graph structures require more rules

Performance

Miss subtle optimizations for specific DNNs/hardware

Motivating Example



The final graph is 30% faster on V100 but 10% slower on K80.



How should we address the complexity of designing DNN graph optimizations?

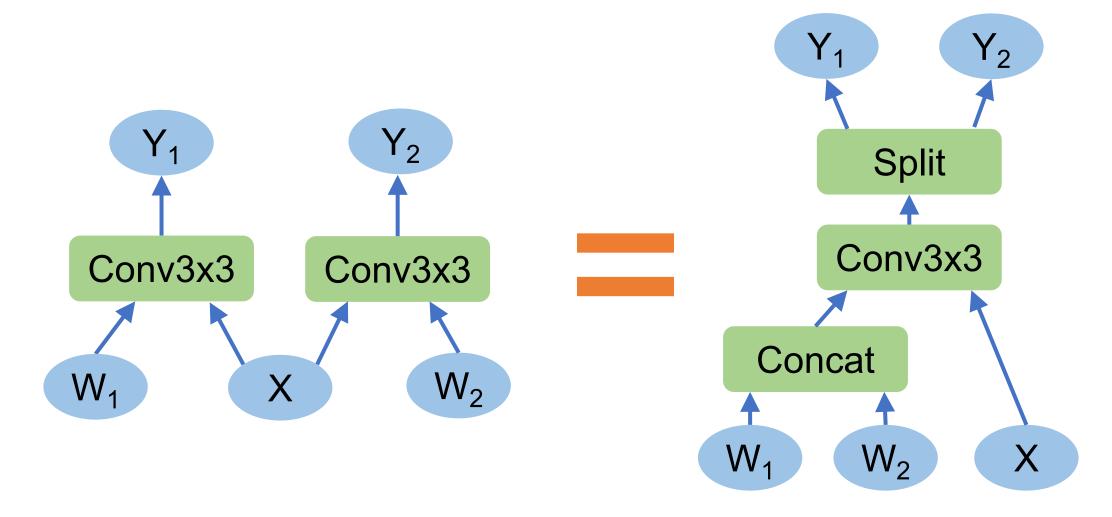
TASO: Tensor Algebra SuperOptimizer

 Key idea: replace manually-designed graph optimizations with automated generation and verification of graph substitutions for deep learning

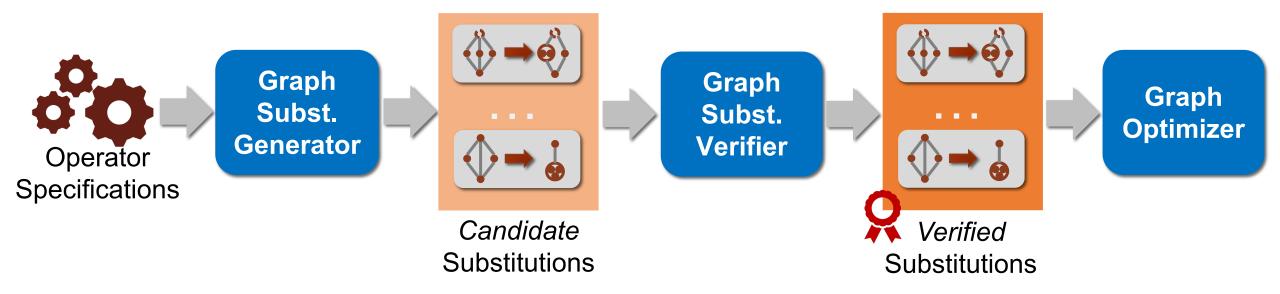
 Less engineering effort: <u>53,000</u> LOC for manual graph optimizations in TensorFlow → <u>1,400</u> LOC in TASO

• Better performance: outperform existing optimizers by up to 2.8x

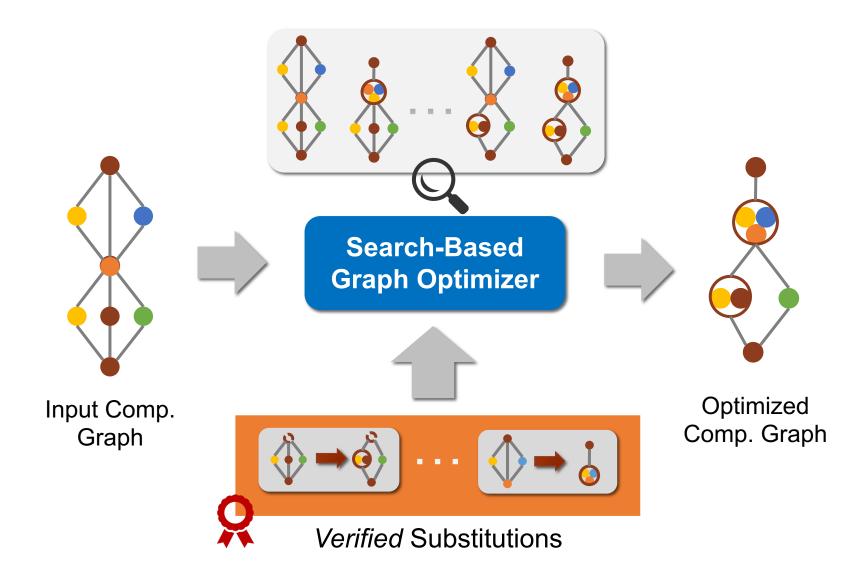
Graph Substitution



TASO Workflow



TASO Workflow



Key Challenges

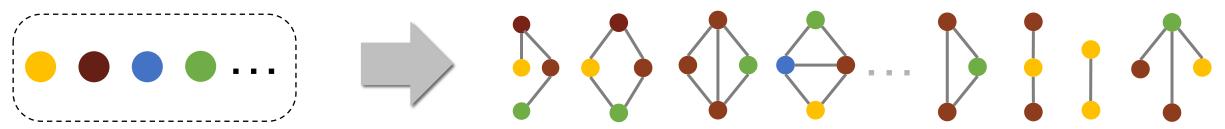
1. How to generate potential substitutions?

Graph fingerprints

2. How to verify their correctness?

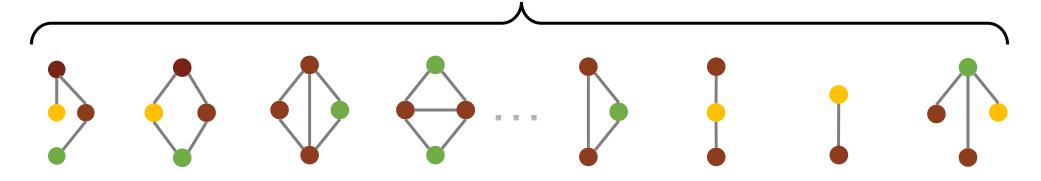
Operator specifications + theorem prover

Enumerate all possible graphs up to a fixed size using available operators

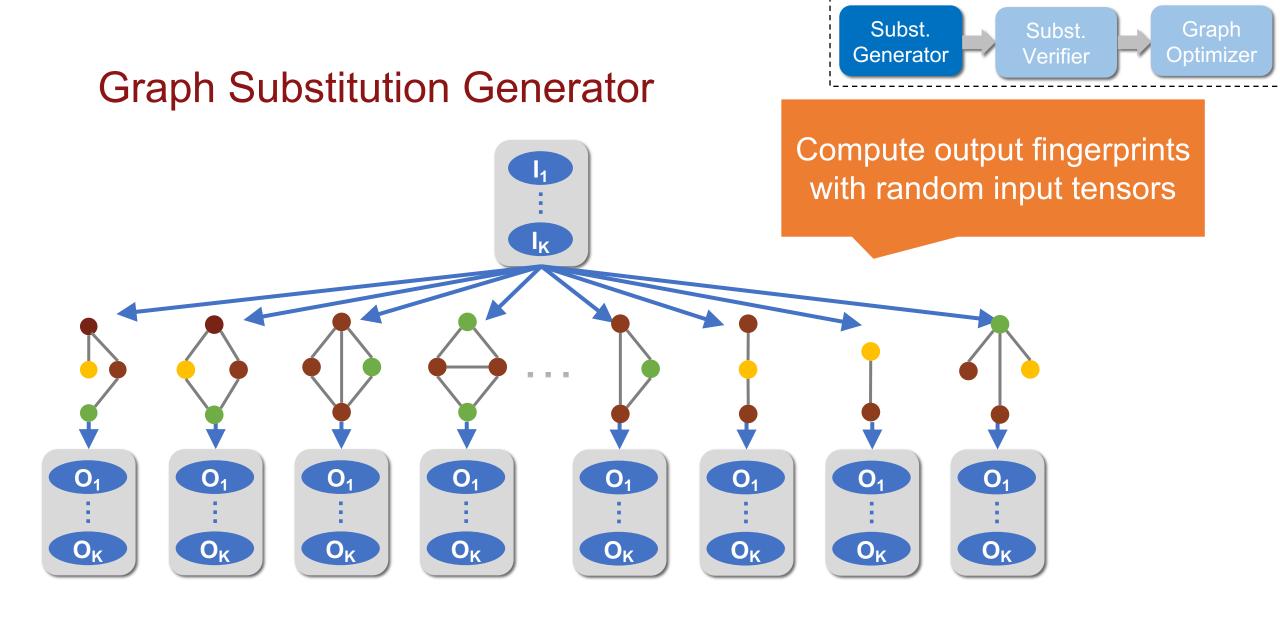


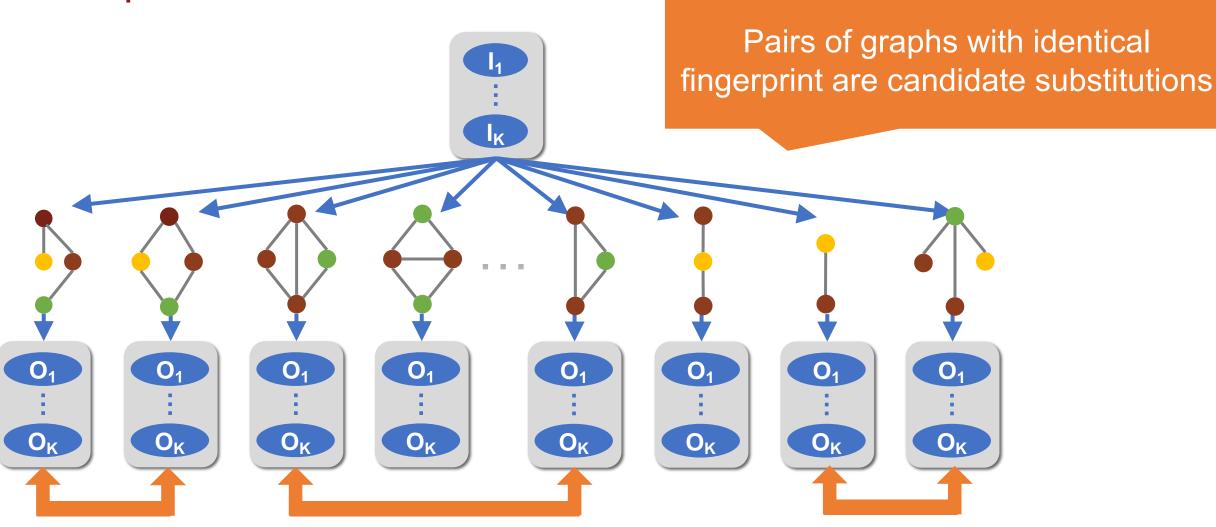
Operators supported by hardware backend

66M graphs with up to 4 operators



Directly evaluating all pairs requires a quadratic number of tests.

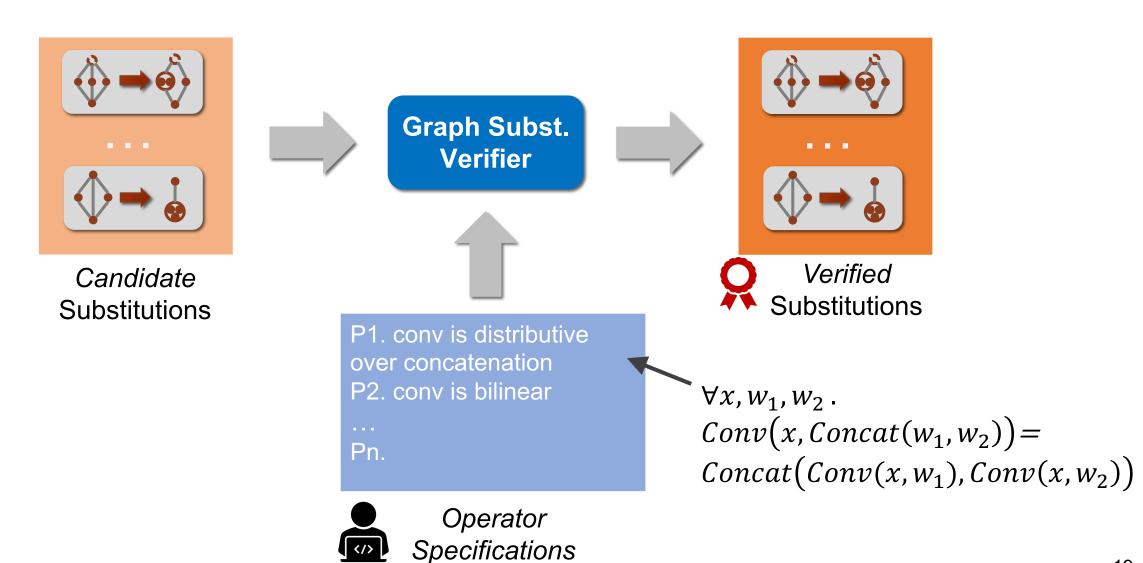




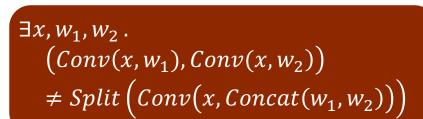
TASO generates ~29,000 substitutions by enumerating graphs w/ up to 4 operators

743 substitutions remain after applying pruning techniques to eliminate redundancy

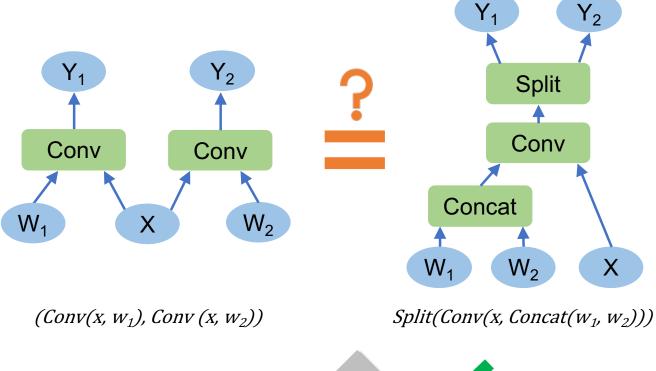
Graph Substitution Verifier



Verification Workflow



P1. $\forall x, w_1, w_2$. $Conv(x, Concat(w_1, w_2)) =$ $Concat(Conv(x, w_1), Conv(x, w_2))$ P2. ...



Theorem Prover

Operator Specifications

Verification Effort

```
Operator Property
                                                                                                                                                   Comment
\forall x, y, z. ewadd(x, \text{ewadd}(y, z)) = \text{ewadd}(\text{ewadd}(x, y), z)
                                                                                                                                                    ewadd is associative
\forall x, y. ewadd(x, y) = \text{ewadd}(y, x)
                                                                                                                                                    ewadd is commutative
\forall x, y, z. ewmul(x, \text{ewmul}(y, z)) = \text{ewmul}(\text{ewmul}(x, y), z)
                                                                                                                                                    ewmul is associative
\forall x, y. \ \text{ewmul}(x, y) = \text{ewmul}(y, x)
                                                                                                                                                    ewmul is commutative
\forall x, y, z. \text{ ewmul}(\text{ewadd}(x, y), z) = \text{ewadd}(\text{ewmul}(x, z), \text{ewmul}(y, z))
                                                                                                                                                   distributivity
\forall x, y, w. \, \operatorname{smul}(\operatorname{smul}(x, y), w) = \operatorname{smul}(x, \operatorname{smul}(y, w))
                                                                                                                                                    smul is associative
\forall x, y, w. \, \text{smul}(\text{ewadd}(x, y), w) = \text{ewadd}(\text{smul}(x, w), \text{smul}(y, w))
                                                                                                                                                   distributivity
                                                                                                                                                                  commutativity
```

TASO generates all <u>743</u> substitutions in 5 minutes, and verifies them against <u>43</u> operator properties in 10 minutes

 $\forall s, p, x, u, z, \text{conv}(s, p, A_{\text{none}}, x, \text{ewadd}(u, z)) = \text{ewadd}(\text{conv}(s, p, A_{\text{none}}, x, u), \text{conv}(s, p, A_{\text{none}}, x, z))$

Supporting a new operator requires <u>a few hours</u> of human effort to discover its properties

```
\forall a, x, y.  split_0(a, concat(a, x, y)) = x
```

Operator specifications in TASO ≈ <u>1,400</u> LOC Manual graph optimizations in TensorFlow ≈ **53,000** LOC

```
\forall s, p, x, y, z. \ \text{concat}(1, \text{conv}(s, p, \epsilon, x, y), \text{conv}(s, p, \epsilon, x, z)) = \text{conv}(s, p, \epsilon, x, \epsilon, \epsilon) \\ = \text{conv}(s, p, A_{\text{none}}, \text{concat}(1, y, w)) = \\ = \text{concat}(1, pool_{\text{avg}}(k, s, p, x), \text{pool}_{\text{avg}}(k, s, p, y)) = \text{pool}_{\text{avg}}(k, s, p, \text{concat}(1, x, y)) \\ \forall k, s, p, x, y. \ \text{concat}(1, pool_{\text{max}}(k, s, p, x), \text{pool}_{\text{max}}(k, s, p, y)) = \text{pool}_{\text{max}}(k, s, p, \text{concat}(1, x, y)) \\ \forall k, s, p, x, y. \ \text{concat}(1, pool_{\text{max}}(k, s, p, x), \text{pool}_{\text{max}}(k, s, p, y)) = \text{pool}_{\text{max}}(k, s, p, \text{concat}(1, x, y)) \\ \forall k, s, p, x, y. \ \text{concat}(1, pool_{\text{max}}(k, s, p, x), \text{pool}_{\text{max}}(k, s, p, y)) = \text{pool}_{\text{max}}(k, s, p, \text{concat}(1, x, y)) \\ \forall k, s, p, x, y. \ \text{concat}(1, pool_{\text{max}}(k, s, p, x), \text{pool}_{\text{max}}(k, s, p, y)) = \text{pool}_{\text{max}}(k, s, p, \text{concat}(1, x, y)) \\ \forall k, s, p, x, y. \ \text{concat}(1, pool_{\text{max}}(k, s, p, x), \text{pool}_{\text{max}}(k, s, p, y)) = \text{pool}_{\text{max}}(k, s, p, \text{concat}(1, x, y)) \\ \forall k, s, p, x, y. \ \text{concat}(1, pool_{\text{max}}(k, s, p, x), \text{pool}_{\text{max}}(k, s, p, y)) = \text{pool}_{\text{max}}(k, s, p, x), \\ \forall k, s, p, x, y. \ \text{concat}(1, pool_{\text{max}}(k, s, p, x), \text{pool}_{\text{max}}(k, s, p, x)) = \text{pool}_{\text{max}}(k, s, p, x), \\ \forall k, s, p, x, y. \ \text{concat}(1, pool_{\text{max}}(k, s, p, x), \text{pool}_{\text{max}}(k, s, p, x)) = \text{pool}_{\text{max}}(k, s, p, x), \\ \forall k, s, p, x, y. \ \text{concat}(1, pool_{\text{max}}(k, s, p, x), \text{pool}_{\text{max}}(k, s, p, x)) = \text{pool}_{\text{max}}(k, s, p, x), \\ \forall k, s, p, x, y. \ \text{concat}(1, pool_{\text{max}}(k, s, p, x), \text{pool}_{\text{max}}(k, s, p, x)) = \text{pool}_{\text{max}}(k, s, p, x), \\ \forall k, s, p, x, y. \ \text{concat}(1, pool_{\text{max}}(k, s, p, x), \text{pool}_{\text{max}}(k, s, p, x)) = \text{pool}_{\text{max}}(k, s, p, x), \\ \forall k, s, p, x, y. \ \text{concat}(1, pool_{\text{max}}(k, s, p, x), \text{pool}_{\text{max}}(k, s, p, x)) = \text{pool}_{\text{max}}(k, s, p, x), \\ \forall k, s, p, x, y. \ \text{concat}(1, pool_{\text{max}}(k, s, p, x), \text{pool}_{\text{max}}(k, s, p, x)) = \text{pool}_{\text{max}}(k, s, p, x), \\ \forall k, s, p, x, y. \ \text{concat}(1, pool_{\text{max}}(k, s, p, x), \text{pool}_{\text{max}}(k, s
```

ommutativity
ommutativity
ommutativity
associative
inear
inear
d transpose
inear
conv is bilinear
conv is bilinear
inear
avolution kernel
Arelu applies relu
ommutativity
conv. with Cpool
rnel
atrix

is its own inverse

split definition
nition
of concatenation
ommutativity

ommutativity
ommutativity
ommutativity
ion and transpose

ion and matrix mul.
ion and matrix mul.
tion and conv.

nearenation and conv.

concatenation and conv.

concatenation and pooling concatenation and pooling concatenation and pooling 21

Search-Based Graph Optimizer¹

Goal: applying verified substitutions to obtain an optimized graph

Cost model²

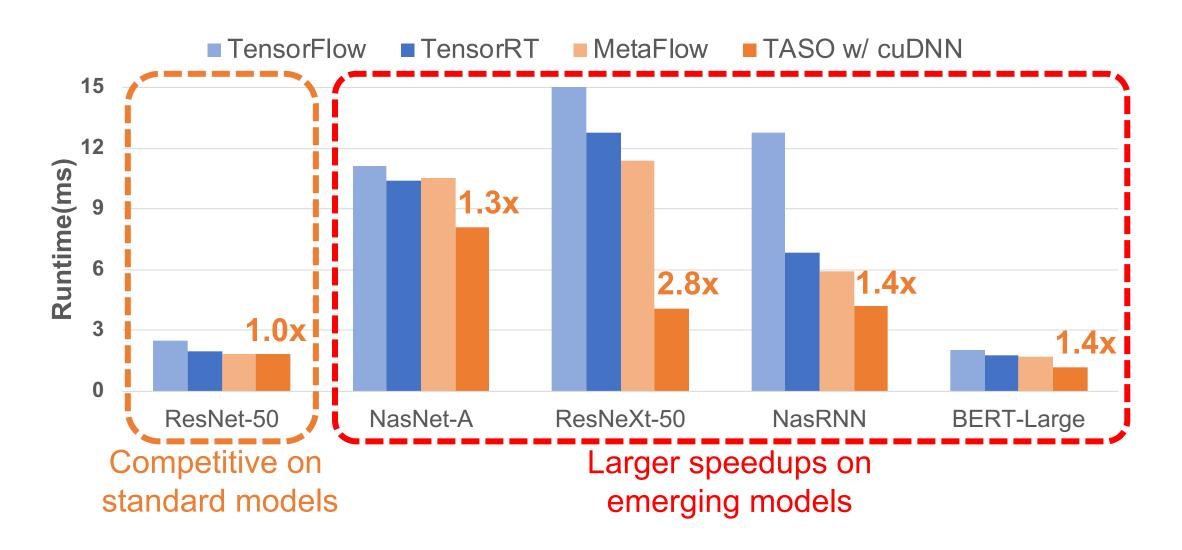
- Based on the sum of individual operators' cost
- Measure the cost of each operator on hardware

Cost-based backtracking search

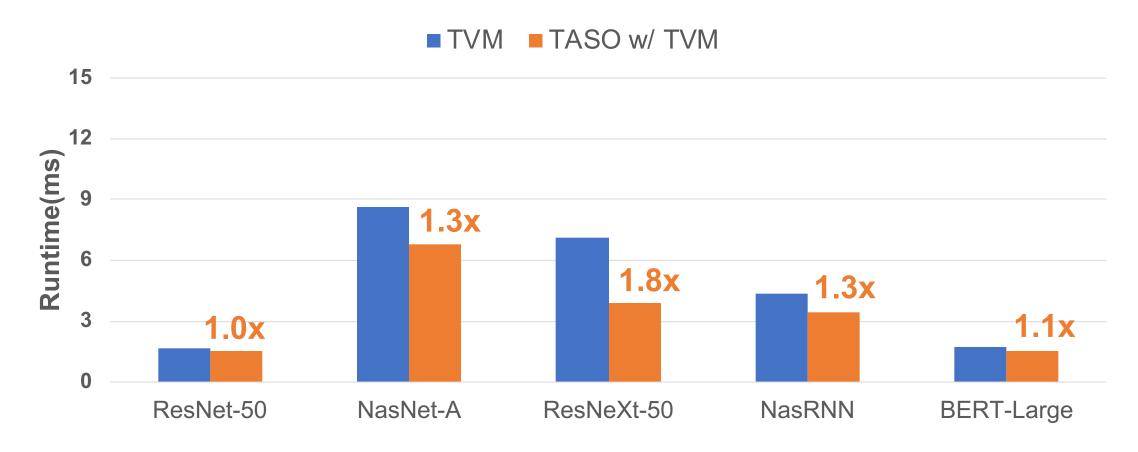
- Backtrack local optimal solutions
- Optimizing a DNN model takes less than 10 minutes

- 1. Z. Jia et al. Optimizing DNN Computation with Relaxed Graph Substitutions. In SysML'19.
- 2. Z. Jia et al. Exploring Hidden Dimensions in Parallelizing Convolutional Neural Networks. ICML'18.

End-to-end Inference Performance (V100 GPU w/ cuDNN)



End-to-end Inference Performance (V100 GPU w/ TVM)

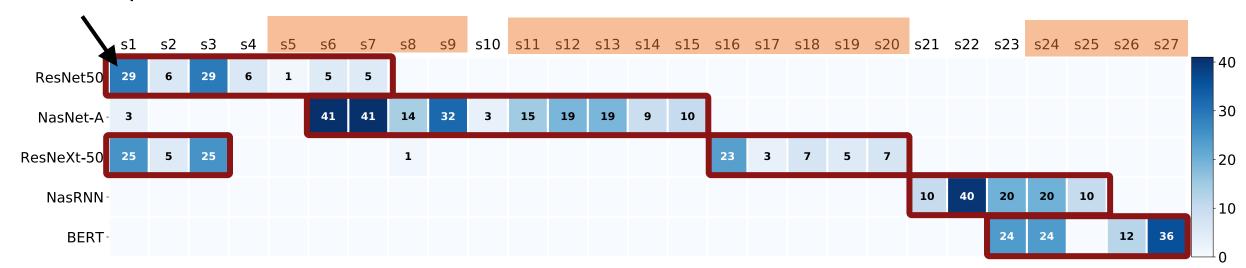


Similar speedups on the TVM backend

Heatmap of Used Substitutions

Not covered in TensorFlow

How many times a subst. is used to optimize a DNN



Different DNN models require different substitutions.

Conclusion

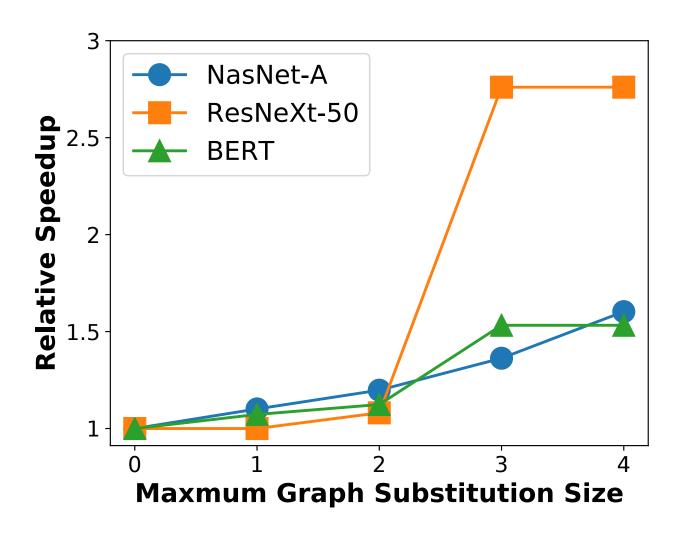
TASO is the first DNN optimizer that automatically generates substitutions

- Less engineering effort
- Better performance
- Formal verification

https://github.com/jiazhihao/taso

Support DNN models in ONNX, TensorFlow, and PyTorch

Scalability Analysis



Case Study: NASNet

Add: element-wise addition

Conv: standard conv

Add

X

Avg

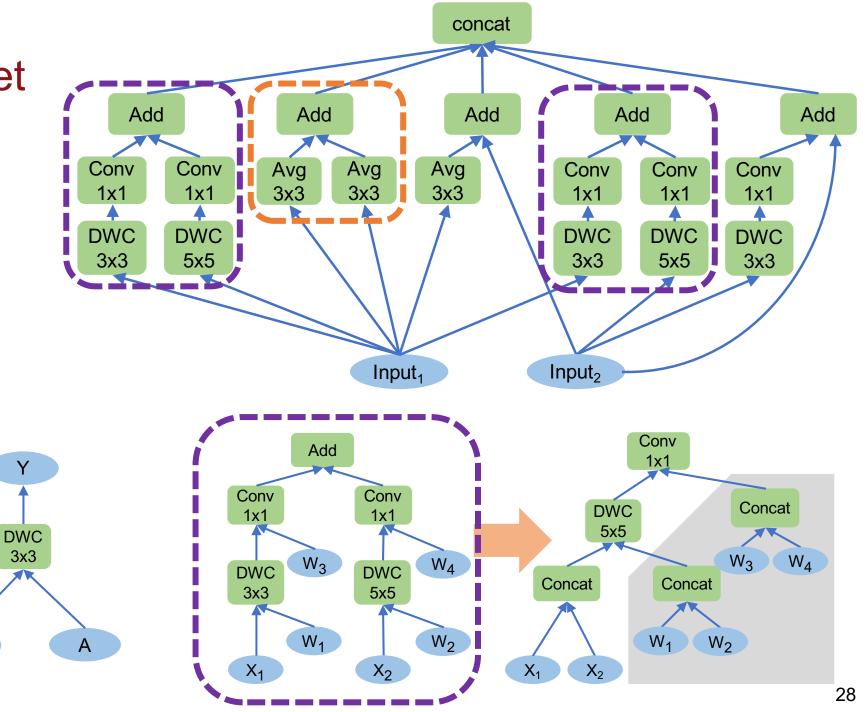
3x3

Avg

3x3

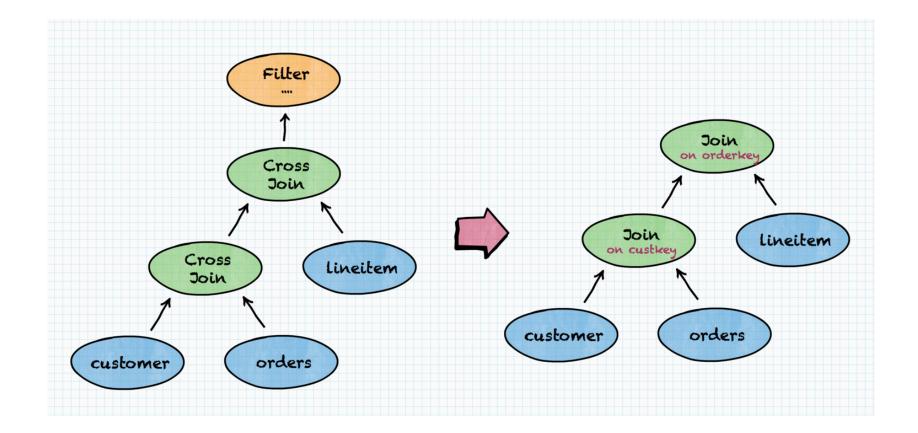
Χ

DWC: depth-wise conv



Future Work: Query Optimizations

- A database query is expressed as a tree of relational operators
- Query optimizations are tree transformations



Contribution

- Replacing current manually-designed graph optimizations with automatic generation of graph substitutions for deep learning
- Less engineering effort: <u>53,000</u> LOC for graph optimizations in TensorFlow → <u>1,400</u> LOC
- Better performance: outperform existing optimizers by up to 2.8x
- Correctness: formal verification of graph substitutions

Robustness

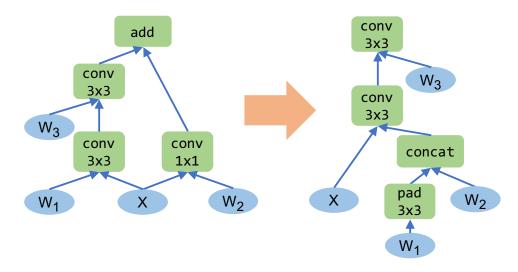
Experts' heuristics do not apply to all DNNs/hardware

Scalability

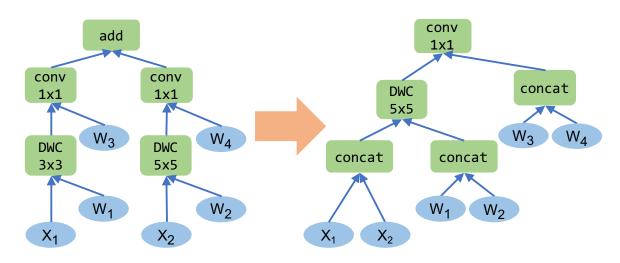
New operators and graph structures require more rules

Performance

Miss subtle optimizations for specific DNNs/hardware



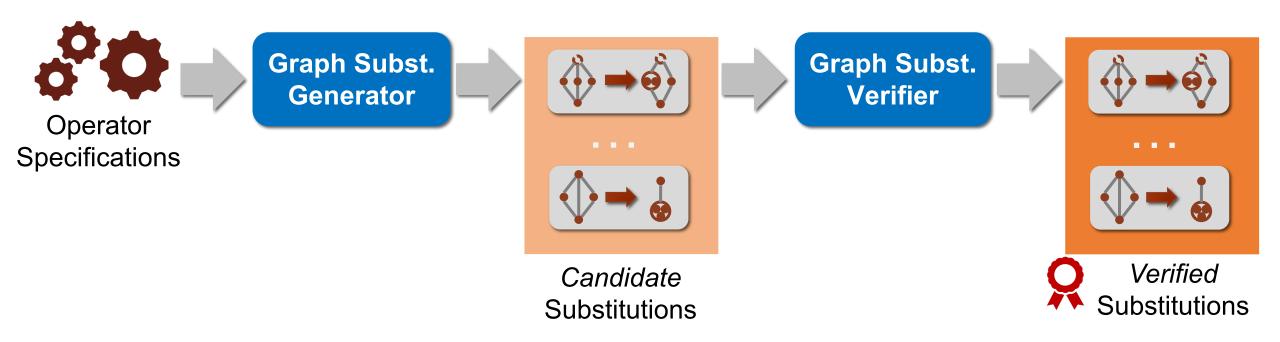
Only apply to specific hardware

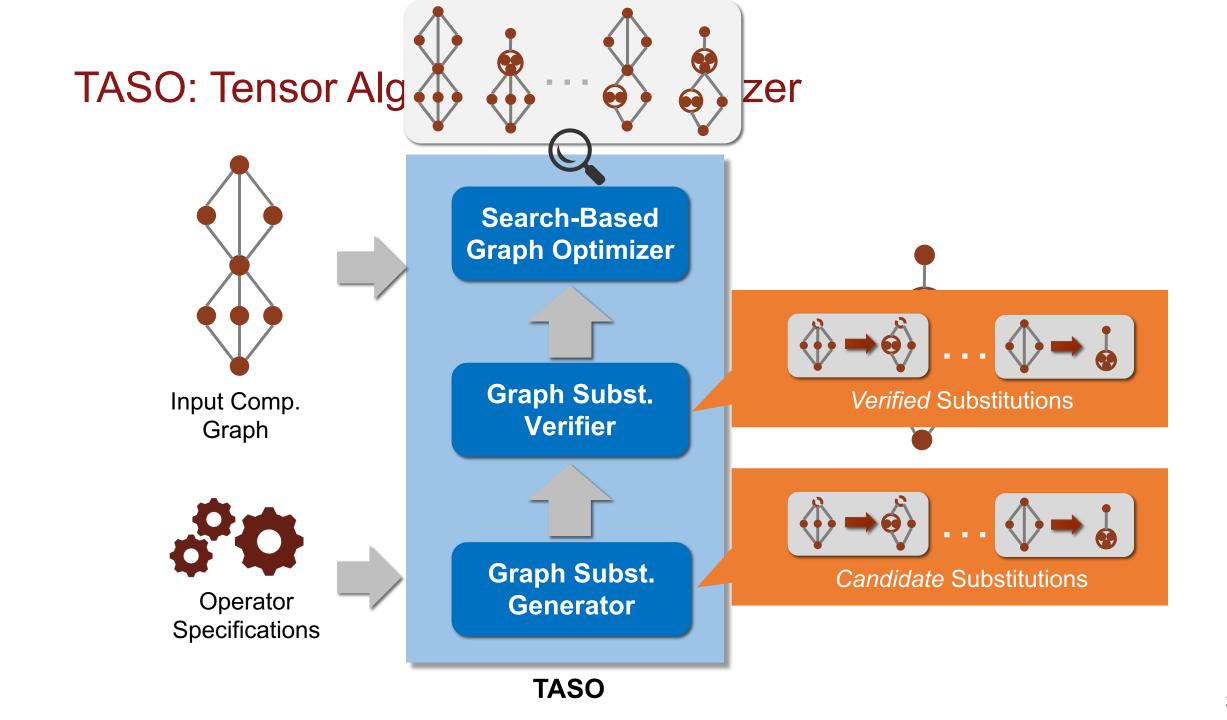


Only apply to specialized graph structures

TASO: Tensor Algebra SuperOptimizer

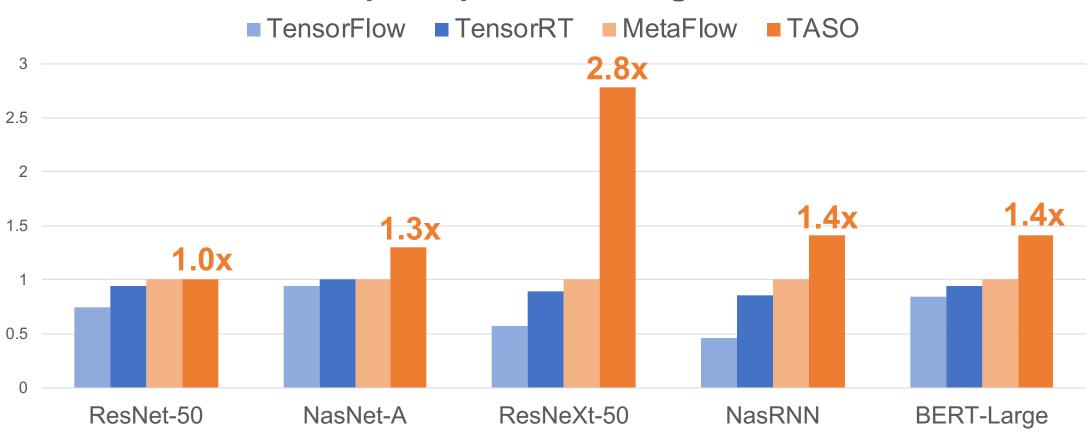
Key idea: automatically *generate* graph substitutions and *verify* them





End-to-end Inference Performance

Relative Speedup over Existing Frameworks



Joint Optimizer for Graph Substitution and Data Layout

- Motivation: some graph substitutions only improve performance when combined with particular layout transformations
- Idea: consider potential layout transformations along with graph substitutions (additional 1.3x speedup)
- Cost-based backtracking search
 - Assume the cost to run a model is the sum of individual operators' costs
 - Measure the cost of each operator on hardware
 - A search takes less than 10 minutes