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Current Rule-based DNN Optimizations
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Fuse conv + relu

Fuse conv + 
batch normalization

Fuse multi. convs

…

Current Rule-based DNN Optimizations

Rule-based Optimizer

TensorFlow currently 
includes ~200 rules 

(~53,000 LOC)



Limitations of Rule-based Optimizations

When I turned on XLA (TensorFlow’s graph optimizer), the 
training speed is about 20% slower.

With XLA, my program is almost 2x slower than
without XLA

Robustness
Experts’ heuristics do not 

apply to all DNNs/hardware  
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Limitations of Rule-based Optimizations

Robustness
Experts’ heuristics do not 

apply to all DNNs/hardware  

Scalability 
New operators and graph 

structures require more rules

TensorFlow currently uses ~4K 
LOC to optimize convolution
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Limitations of Rule-based Optimizations

Robustness
Experts’ heuristics do not 

apply to all DNNs/hardware  

Scalability 
New operators and graph 

structures require more rules

Performance 
Miss subtle optimizations for

specific DNNs/hardware
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Motivating Example
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The final graph is 30% faster on V100 but 10% slower on K80.
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DNN Graph 
Optimizations

DNN 
Operators

Graph
Architectures

Hardware 
Backends

How should we address the complexity of 
designing DNN graph optimizations? 



TASO: Tensor Algebra SuperOptimizer

• Key idea: replace manually-designed graph optimizations with automated 
generation and verification of graph substitutions for deep learning

• Less engineering effort: 53,000 LOC for manual graph optimizations in 
TensorFlow → 1,400 LOC in TASO

• Better performance: outperform existing optimizers by up to 2.8x
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Graph Substitution
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TASO Workflow
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TASO Workflow
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Key Challenges

1. How to generate potential substitutions?

2. How to verify their correctness?

Graph fingerprints

Operator specifications + theorem prover

13



Graph Substitution Generator

Enumerate all possible graphs up to a 
fixed size using available operators
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Graph Substitution Generator
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66M graphs with up to 4 operators

Subst. 
Generator

Subst. 
Verifier

Graph 
Optimizer

Directly evaluating all pairs requires a quadratic 
number of tests. 



Graph Substitution Generator
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Compute output fingerprints 
with random input tensors
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Graph Substitution Generator
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Pairs of graphs with identical 
fingerprint are candidate substitutions
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Graph Substitution Generator
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TASO generates ~29,000 substitutions by 
enumerating graphs w/ up to 4 operators 

743 substitutions remain after applying 
pruning techniques to eliminate redundancy
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Subst. 
Verifier

Graph 
Optimizer



Graph Substitution Verifier
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… Graph Subst. 
Verifier

…

Candidate
Substitutions

Verified
Substitutions

P1. conv is distributive 
over concatenation
P2. conv is bilinear
…
Pn. 

Operator 
Specifications

∀𝑥,𝑤%, 𝑤& .
𝐶𝑜𝑛𝑣 𝑥, 𝐶𝑜𝑛𝑐𝑎𝑡 𝑤%, 𝑤& =
𝐶𝑜𝑛𝑐𝑎𝑡 𝐶𝑜𝑛𝑣(𝑥, 𝑤%), 𝐶𝑜𝑛𝑣 𝑥,𝑤&
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Verifier
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Verification Workflow
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Theorem 
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P2. …
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Verification Effort
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TASO generates all 743 substitutions in 5 minutes, and 
verifies them against 43 operator properties in 10 minutes

Supporting a new operator requires a few hours of human 
effort to discover its properties

Operator specifications in TASO ≈ 1,400 LOC
Manual graph optimizations in TensorFlow ≈ 53,000 LOC  



Search-Based Graph Optimizer1

• Goal: applying verified substitutions to obtain an optimized graph

• Cost model2
• Based on the sum of individual operators’ cost
• Measure the cost of each operator on hardware

• Cost-based backtracking search
• Backtrack local optimal solutions
• Optimizing a DNN model takes less than 10 minutes
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1. Z. Jia et al. Optimizing DNN Computation with Relaxed Graph Substitutions. In SysML’19.
2. Z. Jia et al. Exploring Hidden Dimensions in Parallelizing Convolutional Neural Networks. ICML’18.



End-to-end Inference Performance (V100 GPU w/ cuDNN)
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Competitive on 
standard models

Larger speedups on
emerging models



End-to-end Inference Performance (V100 GPU w/ TVM)
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Similar speedups on the TVM backend



Heatmap of Used Substitutions
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Different DNN models require different substitutions.

Not covered in 
TensorFlow

How many times a subst. is 
used to optimize a DNN



Conclusion

TASO is the first DNN optimizer that automatically generates substitutions
• Less engineering effort
• Better performance
• Formal verification

https://github.com/jiazhihao/taso
• Support DNN models in ONNX, TensorFlow, and PyTorch
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https://github.com/jiazhihao/taso


Scalability Analysis
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Future Work: Query Optimizations

• A database query is expressed as a tree of relational operators
• Query optimizations are tree transformations
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Contribution

• Replacing current manually-designed graph optimizations with     
automatic generation of graph substitutions for deep learning

• Less engineering effort: 53,000 LOC for graph optimizations in 
TensorFlow → 1,400 LOC

• Better performance: outperform existing optimizers by up to 2.8x

• Correctness: formal verification of graph substitutions
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Limitations of Rule-based Optimizations

Robustness
Experts’ heuristics do not apply 

to all DNNs/hardware  

Scalability 
New operators and graph 

structures require more rules

Performance 
Miss subtle optimizations for

specific DNNs/hardware
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TASO: Tensor Algebra SuperOptimizer

Key idea: automatically generate graph substitutions and verify them
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TASO: Tensor Algebra SuperOptimizer
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End-to-end Inference Performance
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Joint Optimizer for Graph Substitution and Data Layout 

• Motivation: some graph substitutions only improve performance when 
combined with particular layout transformations

• Idea: consider potential layout transformations along with graph substitutions 
(additional 1.3x speedup)

• Cost-based backtracking search
• Assume the cost to run a model is the sum of individual operators’ costs
• Measure the cost of each operator on hardware
• A search takes less than 10 minutes
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