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QNN Dialect
-- Animesh Jain
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How to consume a pre-quantized model via TVM?

Option 1 – Completely add new ops from scratch
• New Relay passes and TVM schedules required

• AlterOpLayout, Graph Fusion etc require work/operator
• No reuse of existing Relay and TVM infrastructure

Option 2 – Lower to a sequence of existing Relay operators
• We introduced a new Relay dialect – QNN to encapsulate this work
• Complete reuse of Relay pass infrastructure
• Possible reuse of TVM schedules (only to some extent)
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QNN Dialect

• Design operators that satisfy many framework operators
• qnn.quantize, qnn.dequantize, qnn.requantize
• qnn.conv2d, qnn.dense
• qnn.concatenate
• qnn.add, qnn.mul

• QNN operators will be lowered to Relay operators

• QNN Optimization passes
• Some optimizations are easier at QNN level
• Intel x86 VNNI requires conv input dtypes to uint8 x int8
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Lowering of Qnn.Quantize

fn (%input_data: Tensor[(2, 5), float32]) {
qnn.quantize(%input_data, out_dtype="uint8", output_zero_point=127, output_scale=0.5f)

}

def @main(%input_data: Tensor[(2, 5), float32]) -> Tensor[(2, 5), uint8] {
%0 = divide(%input_data, 0.5f /* ty=float32 */) /* ty=Tensor[(2, 5), float32] */;
%1 = round(%0) /* ty=Tensor[(2, 5), float32] */;
%2 = cast(%1, dtype="int32") /* ty=Tensor[(2, 5), int32] */;
%3 = add(%2, 127 /* ty=int32 */) /* ty=Tensor[(2, 5), int32] */;
%4 = clip(%3, a_min=0f, a_max=255f) /* ty=Tensor[(2, 5), int32] */;
cast(%4, dtype="uint8") /* ty=Tensor[(2, 5), uint8] */

}
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Lowering of Qnn.Conv2D

For zero-centered zero point, the lowering will have just nn.conv2d

fn (%data: Tensor[(1, 3, 2, 3), uint8], %weight: Tensor[(3, 3, 2, 2), uint8]) {
qnn.conv2d(%data, %weight, … , out_dtype="int32", input_zero_point=1, kernel_zero_point=1)}

def @main(%data: Tensor[(1, 3, 2, 3), uint8], %weight: Tensor[(3, 3, 2, 2), uint8]) -> Tensor[(1, 3, 1, 2), int32] {
%0 = nn.conv2d(%data, %weight, … , out_dtype="int32") /* ty=Tensor[(1, 3, 1, 2), int32] */;
%1 = cast(%data, dtype="int32") /* ty=Tensor[(1, 3, 2, 3), int32] */;
%2 = multiply(%1, 4 /* ty=int32 */) /* ty=Tensor[(1, 3, 2, 3), int32] */;
%3 = nn.avg_pool2d(%2, pool_size=[2, 2]) /* ty=Tensor[(1, 3, 1, 2), int32] */;
%4 = sum(%3, axis=[1], keepdims=True) /* ty=Tensor[(1, 1, 1, 2), int32] */;
%5 = multiply(1 /* ty=int32 */, %4) /* ty=Tensor[(1, 1, 1, 2), int32] */;
%6 = subtract(%0, %5) /* ty=Tensor[(1, 3, 1, 2), int32] */;
%7 = cast(%weight, dtype="int32") /* ty=Tensor[(3, 3, 2, 2), int32] */;
%8 = sum(%7, axis=[1, 2, 3]) /* ty=Tensor[(3), int32] */;
%9 = reshape(%8, newshape=[1, 3, 1, 1]) /* ty=Tensor[(1, 3, 1, 1), int32] */;
%10 = multiply(1 /* ty=int32 */, %9) /* ty=Tensor[(1, 3, 1, 1), int32] */;
%11 = subtract(12 /* ty=int32 */, %10) /* ty=Tensor[(1, 3, 1, 1), int32] */;
add(%6, %11) /* ty=Tensor[(1, 3, 1, 2), int32] */}

Asymmetric
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Proof of Concept on TFLite models

• Metric – Latency in ms for batch size = 1
• Comparable accuracies
• 1.7x speedup on Inception asymmetric quantized model
• Symmetric model improves the speedup to 2.8x

Unit: ms
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How Can We Make It Better?
Framework Pre-quantized Graph

MxnetTF …. parsers using

QNN Graph

QNN Dialect

QNN passes

Target-independent Relay passes

Target-optimized Int8 Relay Graph

Intel x86 ARM CPU Nvidia GPU ARM  GPU …. schedules

Relay Int8 Graph

Target-dependent Relay layout opt
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New Amazon EC2 instances
-- Hongbin Zheng, Yizhi Liu, Haichen Shen,

and many people in Annapurna Labs
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Amazon EC2 Inf1 instances

• Powered by AWS Inferentia
• Low latency, 3x higher throughput, up to 40% lower cost-per-

inference compared to G4
• Up to 2,000 TOPS at sub-millisecond latency
• Integrated with popular ML frameworks TensorFlow, PyTorch

and MXNet
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AWS Inferentia Chip

Four NeuroCores per chip customized tensor-level optimization

Two-stage memory
hierarchy: large on-chip

cache and commodity DRAM
Proactive data movement management

Fast chip-to-chip
interconnect via specialized

communication protocol
Model parallelism in pipeline
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Amazon EC2 M6g, R6g, C6g instances

• Powered by ARM-based AWS Graviton2 processors
• 4x more compute cores, 5x faster memory, and 7x the

performance of initial Graviton offering
• 40% price/performance advantage over current x86-based

instances
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ML inference on Graviton2

• General-purposed CPU is capable of doing machine
learning/deep learning inference

• Check out our paper Optimizing CNN Model Inference on CPUs at
USENIX ATC ’19

• Compared to M5, M6g does faster model inference with
lower price
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Dive into Deep Learning Compiler
-- Mu Li and Yida Wang
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A typical conversation

Customer/user/new hire/… Us/and maybe you…

How to use TVM to do…

We can do the following steps…

Cool, is there any tutorial?

Yes, for this check this, for that
check that…

I failed. TVM is REALLY
REALLY hard to get
started/use/deploy…
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From discuss.tvm.ai
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Dive into Deep Learning (https://D2L.ai)

• An interactive deep learning book with code, 
math, and discussions

• GitHub: 18,000 stars, 200 contributors
• Presented in multiple languages: Chinese,

English, Japanese, Korean
• The Chinese book is the No. 1 best seller at 

the largest Chinese online bookstore
• The English book is available in preview

https://d2l.ai/
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D2L adoption

• Adopted as a textbook by 40+ global universities and Amazon Machine 
Learning University

Ø Carnegie Mellon University
Ø Indian Institute of Technology Bombay
Ø Massachusetts Institute of Technology
Ø Peking University
Ø Shanghai Jiao Tong University
Ø University of California, Berkeley
Ø University of Illinois at Urbana-Champaign
Ø University of Science and Technology of China
Ø Zhejiang University
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D2L Compiler: http://tvm.d2l.ai

• A systematic tutorial to the beginners who want to USE TVM,
and more broadly, who’d like to take DLC-101

• Python notebook based, runnable on Colab
• V0.1 released, 22 sections, covering getting started and basic

operator-level optimization
• Call for contributors

http://tvm.d2l.ai/
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SageMaker Neo
-- Amazon SageMaker Neo team

https://aws.amazon.com/sagemaker/neo/
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SageMaker Neo: Train once, Run anywhere

Neo

ONNX

SageMaker Algorithms
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Amazon SageMaker Neo Pipeline

Input models

Compilation
configuration

Compilation S3 bucket
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Integration with SageMaker NEO

TensorFlow
Parser

MXNet
Parser

PyTorch
Parser

ONNX
Parser

XGBoost
Parser

Contrib Compiler

TVM
Treelite

LLVM CUDA OpenCL

Compiled Model

Neo Runtime

Contrib Runtime

X86 AARCH64 RISC-V GPU FPGA ASIC

EC2 Instance Device

Relay

Compiler Runtime
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Bring Your Own Codegen to TVM
-- Zhi Chen and Cody Yu
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Why?
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How does it look like?

Relay IR

Your Codegen
LLVM, CUDA, 
Metal, VTASerialized 

External Library

Relay Runtime
(VM, Graph Runtime, Interpreter)

Your runtime

Target Device
General Devices

(CPU/GPU/FPGA)

Annotation

Partitioning

Relay optimization/compilation

def @main(%x, %y) {
%0 = fn (%gcc_input0, %gcc_input1, 

External="gcc", FuncName="gcc_0", Primitive=1) {
add(%gcc_input0, %gcc_input1)

};
%0(%x, %y);
}

def @main(%x, %y) {
add(%x, %y)

}

DSOModule/JSon

JSON runtime
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How to Integrate?

• Codegen
§ With engine DNNL, TensorRT

§ Generate artifacts that can be loaded/saved through existing TVM runtime 
module, e.g. DSOModule

§ Without engine
§ Produce library wrappers that are compatible to TVM and generate DSOModule

• Runtime
§ Reuse existing TVM runtime
§ Custom runtime could be imported to TVM runtime
§ Invoke integrated runtime directly through PackedFunc
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Pass Manager
-- Zhi Chen
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What does it do?

• Traditional compiler
§ Make pass developers’ life easier
§ Maintain pass info, i.e. pass dependencies
§ Keep analysis info update to date

• Deep learning framework
§ PyTorch and Keras Sequential, Gluon Block
§ Allow flexible customized pipeline
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How does it work?

Relay IR

Relay Runtime
(VM, Graph Runtime, Interpreter)

Compilation and Optimization (PM)

Module Pass Function Pass Sequential Pass

Optimized Relay IR• Need global info
• Add/remove a function to module
• Lambda lift, Inline

• Only need information in a function scope
• Add/modify/remove expressions in a function
• SimplifyInference, fusion, constant folding

• Apply a sequence of passes
• Help developers to customize optimization pipeline
• Fold scale axis, hardware dependent/independent 

passes
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How to Customize Your Optimization Pipeline?

seq1 = relay.transform.Sequential([a, b, c])
seq2 = relay.transform.Sequential([d, e, f])

with build_config(opt_level=2): # hardware independent
mod1 = seq1(mod)

with build_config(opt_level=3, disabled_pass=[e]): # hardware dependent
mod2 = seq2(mod1)

Tutorial: https://docs.tvm.ai/tutorials/dev/relay_pass_infra.html#sphx-glr-tutorials-dev-relay-pass-infra-py

https://docs.tvm.ai/tutorials/dev/relay_pass_infra.html
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AWS in rest of today

Ø 12:10 Dynamic Execution and Virtual Machine

Ø 13:20 Dynamic Model - Graph Dispatching

Ø 17:30 Improving AutoTVM Efficiency by Schedule Sharing

Ø 17:40 Optimizing Sparse/Graph Kernels via TVM
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Takeaways

• Industry needs an open standard compiler for DL
• AWS working on the TVM stack

• We are eager to collaborate with the community
• Talk to us, we have 10+ people here today!

• We are hiring!
• Write to Yida Wang (wangyida@amazon.com), Zhi Chen 

(chzhi@amazon.com), or Vin Sharma (vinarm@amazon.com)

http://amazon.com
http://amazon.com
http://amazon.com

