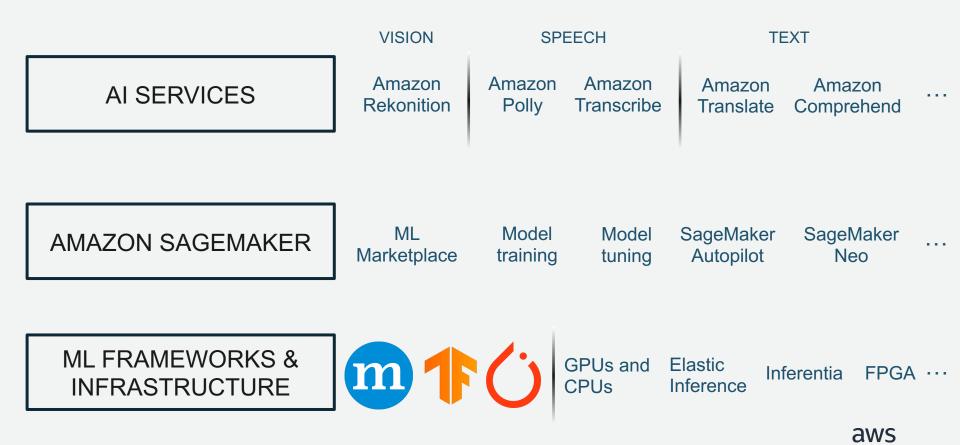


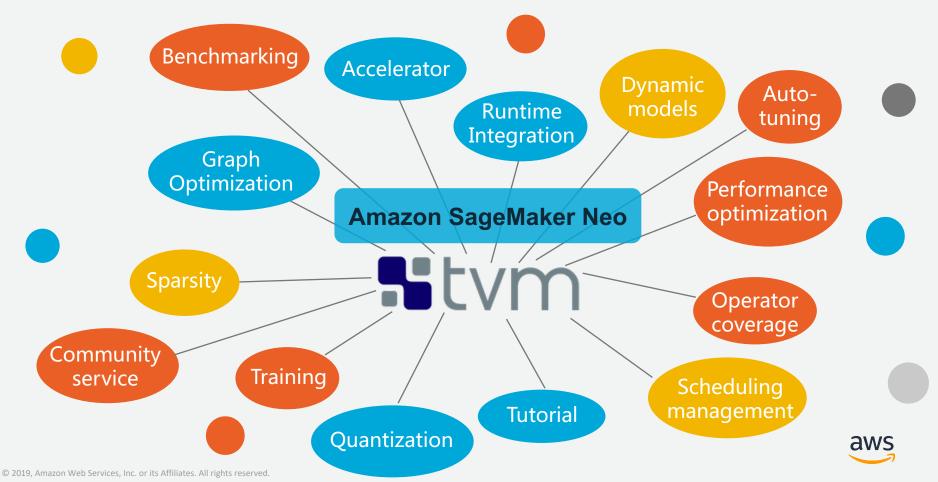
Deep Learning Compiler

Yida Wang and Zhi Chen AWS AI

A reduced snapshot of AWS AI



Deep learning compiler projects at AWS AI



QNN Dialect

-- Animesh Jain

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

How to consume a pre-quantized model via TVM?

Option 1 – Completely add new ops from scratch

- New Relay passes and TVM schedules required
 - AlterOpLayout, Graph Fusion etc require work/operator
- No reuse of existing Relay and TVM infrastructure

Option 2 – Lower to a sequence of existing Relay operators

- We introduced a new Relay dialect QNN to encapsulate this work
- Complete reuse of Relay pass infrastructure
- Possible reuse of TVM schedules (only to some extent)

QNN Dialect

- Design operators that satisfy many framework operators
 - qnn.quantize, qnn.dequantize, qnn.requantize
 - qnn.conv2d, qnn.dense
 - qnn.concatenate
 - qnn.add, qnn.mul
- QNN operators will be lowered to Relay operators
- QNN Optimization passes
 - Some optimizations are easier at QNN level
 - Intel x86 VNNI requires conv input dtypes to uint8 x int8

Lowering of Qnn.Quantize

fn (%input_data: Tensor[(2, 5), float32]) {
 qnn.quantize(%input_data, out_dtype="uint8", output_zero_point=127, output_scale=0.5f)

def @main(%input_data: Tensor[(2, 5), float32]) -> Tensor[(2, 5), uint8] {
 %0 = divide(%input_data, 0.5f /* ty=float32 */) /* ty=Tensor[(2, 5), float32] */;
 %1 = round(%0) /* ty=Tensor[(2, 5), float32] */;
 %2 = cast(%1, dtype="int32") /* ty=Tensor[(2, 5), int32] */;
 %3 = add(%2, 127 /* ty=int32 */) /* ty=Tensor[(2, 5), int32] */;
 %4 = clip(%3, a_min=0f, a_max=255f) /* ty=Tensor[(2, 5), int32] */;
 cast(%4, dtype="uint8") /* ty=Tensor[(2, 5), uint8] */

Lowering of Qnn.Conv2D

fn (%data: Tensor[(1, 3, 2, 3), uint8], %weight: Tensor[(3, 3, 2, 2), uint8]) { **qnn.conv2d**(%data, %weight, ..., **out dtype=**"int32", **input zero point=1**, **kernel zero point=1**}

def @main(%data: Tensor[(1, 3, 2, 3), uint8], %weight: Tensor[(3, 3, 2, 2), uint8]) -> Tensor[(1, 3, 1, 2), int32] { %0 = nn.conv2d(%data, %weight, ..., out dtype="int32") /* ty=Tensor[(1, 3, 1, 2), int32] */; %1 = cast(%data, dtype="int32") /* ty=Tensor[(1, 3, 2, 3), int32] */; %2 = multiply(%1, 4 /* ty=int32 */) /* ty=Tensor[(1, 3, 2, 3), int32] */; %3 = nn.avg pool2d(%2, pool size=[2, 2]) /* ty=Tensor[(1, 3, 1, 2), int32] */; %4 = sum(%3, axis=[1], keepdims=True) /* ty=Tensor[(1, 1, 1, 2), int32] */; %5 = multiply(1 /* ty=int32 */, %4) /* ty=Tensor[(1, 1, 1, 2), int32] */; %6 = subtract(%0, %5) /* ty=Tensor[(1, 3, 1, 2), int32] */; %7 = cast(%weight, dtype="int32") /* ty=Tensor[(3, 3, 2, 2), int32] */; %8 = sum(%7, axis=[1, 2, 3]) /* ty=Tensor[(3), int32] */; %9 = reshape(%8, newshape=[1, 3, 1, 1]) /* ty=Tensor[(1, 3, 1, 1), int32] */; %10 = multiply(1 /* ty=int32 */, %9) /* ty=Tensor[(1, 3, 1, 1), int32] */; %11 = subtract(12 /* ty=int32 */, %10) /* ty=Tensor[(1, 3, 1, 1), int32] */; add(%6, %11) /* ty=Tensor[(1, 3, 1, 2), int32] */}

Asymmetric

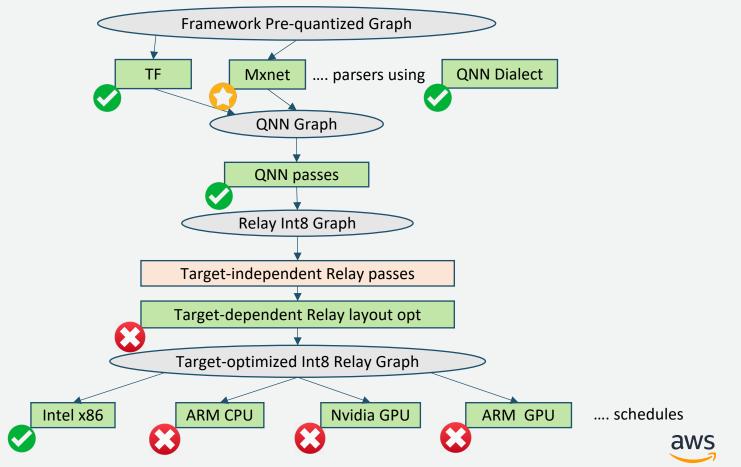
For zero-centered zero point, the lowering will have just nn.conv2d

Proof of Concept on TFLite models

Unit: ms	Float32	Quantized	Speedup
Inception V1	NA	2.143	NA
Inception V2	NA	8.919	NA
Inception V3	10.373	6.115	1.7
Inception V4	21.233	12.315	1.72

- Metric Latency in ms for batch size = 1
- Comparable accuracies
- 1.7x speedup on Inception **asymmetric** quantized model
- **Symmetric** model improves the speedup to 2.8x

How Can We Make It Better?



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

New Amazon EC2 instances

-- Hongbin Zheng, Yizhi Liu, Haichen Shen, and many people in Annapurna Labs

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Amazon EC2 Inf1 instances

- Powered by AWS Inferentia
- Low latency, 3x higher throughput, up to 40% lower cost-perinference compared to G4
- Up to 2,000 TOPS at sub-millisecond latency
- Integrated with popular ML frameworks TensorFlow, PyTorch and MXNet

AWS Inferentia Chip

Four NeuroCores per chip

customized tensor-level optimization

Proactive data movement management

Two-stage memory hierarchy: large on-chip cache and commodity DRAM

Fast chip-to-chip interconnect via specialized communication protocol

Model parallelism in pipeline

Amazon EC2 M6g, R6g, C6g instances

- Powered by ARM-based AWS Graviton2 processors
- 4x more compute cores, 5x faster memory, and 7x the performance of initial Graviton offering
- 40% price/performance advantage over current x86-based instances

ML inference on Graviton2

- General-purposed CPU is capable of doing machine learning/deep learning inference
 - Check out our paper *Optimizing CNN Model Inference on CPUs* at USENIX ATC '19

• Compared to M5, M6g does faster model inference with lower price

Dive into Deep Learning Compiler

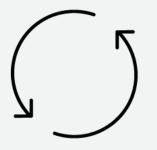
-- Mu Li and Yida Wang

A typical conversation

Customer/user/new hire/...

How to use TVM to do...

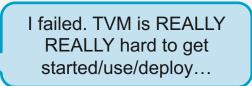
Cool, is there any tutorial?



Us/and maybe you...

We can do the following steps...

Yes, for this check this, for that check that...

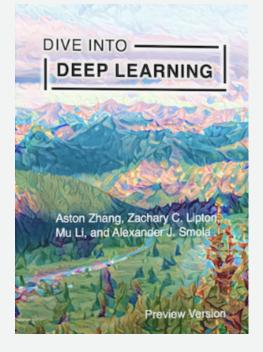


From discuss.tvm.ai

Any n Question	naterials of Relay for beginners?	
Confu Questions	se with module.get_out function	r 26
No sp Questions	eed increase when converting model to TVM	'ks res
How t	o save relay model for deploying to android?	in
Begin Question	ners Guide to Contributing	
Hi I r	adhavajay , eally want to be able to help out on this project and other DL edge frameworks, but I need s idance on where to start.	Oct '18

Dive into Deep Learning (<u>https://D2L.ai</u>)

- An interactive deep learning book with code, math, and discussions
- GitHub: 18,000 stars, 200 contributors
- Presented in multiple languages: Chinese, English, Japanese, Korean
- The Chinese book is the No. 1 best seller at the largest Chinese online bookstore
- The English book is available in preview



D2L adoption

- Adopted as a textbook by 40+ global universities and Amazon Machine Learning University
 - Carnegie Mellon University
 - Indian Institute of Technology Bombay
 - Massachusetts Institute of Technology
 - Peking University
 - Shanghai Jiao Tong University
 - University of California, Berkeley
 - University of Illinois at Urbana-Champaign
 - University of Science and Technology of China
 - Zhejiang University

D2L Compiler: <u>http://tvm.d2l.ai</u>

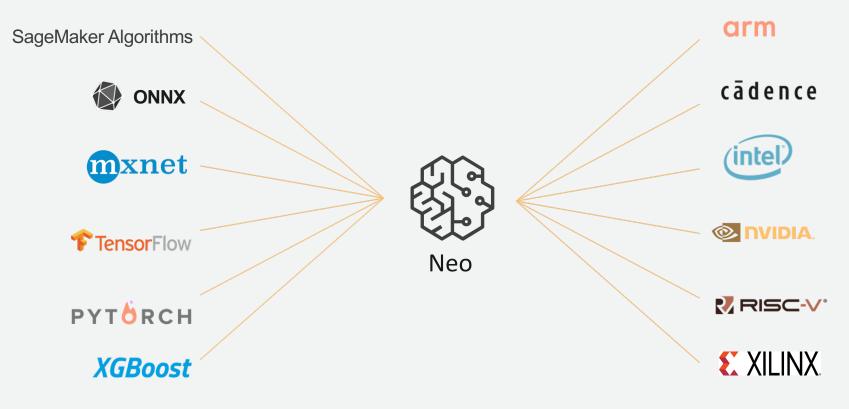
- A systematic tutorial to the beginners who want to **USE** TVM, and more broadly, who'd like to take DLC-101
- Python notebook based, runnable on Colab
- V0.1 released, 22 sections, covering getting started and basic operator-level optimization
- Call for contributors

SageMaker Neo

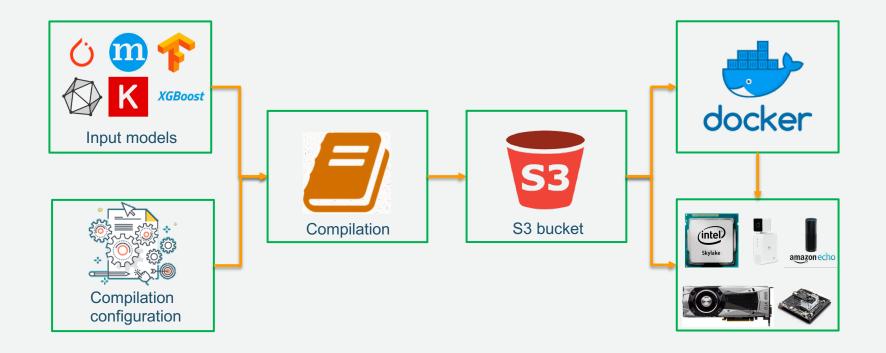
-- Amazon <u>SageMaker Neo</u> team

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

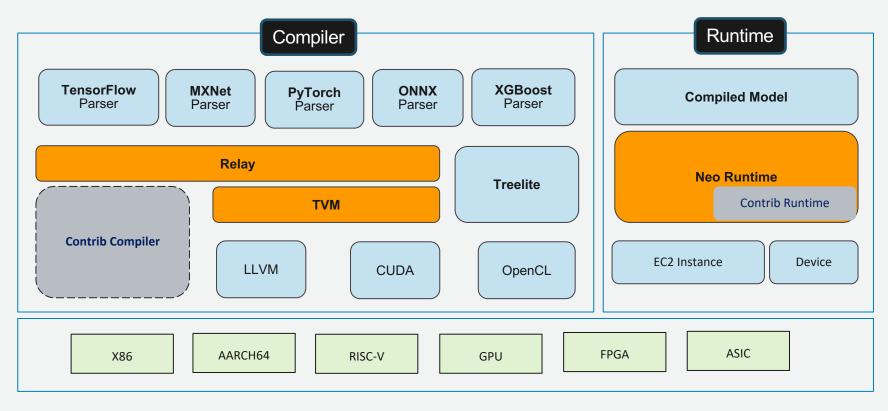
SageMaker Neo: Train once, Run anywhere



Amazon SageMaker Neo Pipeline



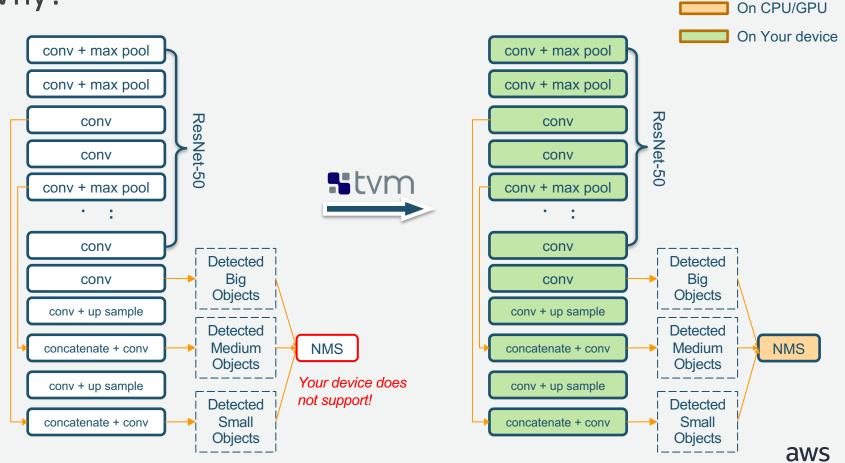
Integration with SageMaker NEO



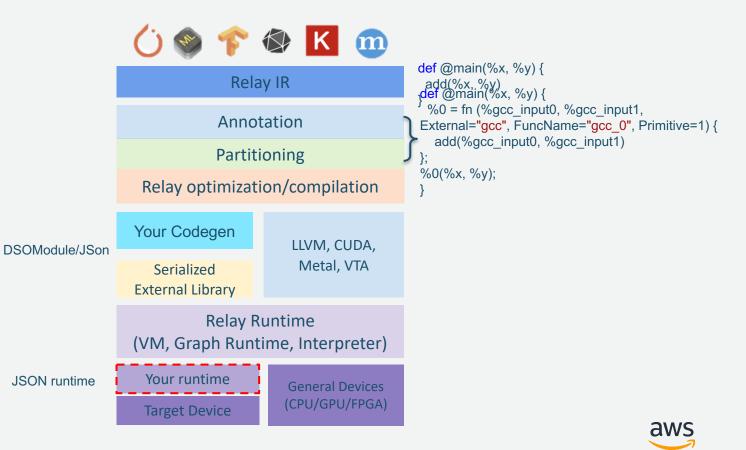
Bring Your Own Codegen to TVM

-- Zhi Chen and Cody Yu

Why?



How does it look like?



How to Integrate?

- Codegen
 - With engine DNNL, TensorRT
 - Generate artifacts that can be loaded/saved through existing TVM runtime module, e.g. DSOModule
 - Without engine
 - Produce library wrappers that are compatible to TVM and generate DSOModule
- Runtime
 - Reuse existing TVM runtime
 - Custom runtime could be imported to TVM runtime
 - Invoke integrated runtime directly through PackedFunc

Pass Manager

-- Zhi Chen

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

What does it do?

- Traditional compiler
 - Make pass developers' life easier
 - Maintain pass info, i.e. pass dependencies
 - Keep analysis info update to date
- Deep learning framework
 - PyTorch and Keras Sequential, Gluon Block
 - Allow flexible customized pipeline

How does it work?

Relay IR

Compilation and Optimization (PM)

Module Pass	Function Pass	Sequential Pass
-------------	---------------	-----------------

- Apply a sequence of passes
- · Help developers to customize optimization pipeline
- Fold scale axis, hardware dependent/independent
 passes

How to Customize Your Optimization Pipeline?

```
seq1 = relay.transform.Sequential([a, b, c])
seq2 = relay.transform.Sequential([d, e, f])
```

```
with build_config(opt_level=2): # hardware independent
mod1 = seq1(mod)
```

with build_config(opt_level=3, disabled_pass=[e]): # hardware dependent mod2 = seq2(mod1)

Tutorial: https://docs.tvm.ai/tutorials/dev/relay_pass_infra.html#sphx-glr-tutorials-dev-relay-pass-infra-py

AWS in rest of today

- 12:10 Dynamic Execution and Virtual Machine
- > 13:20 Dynamic Model Graph Dispatching
- > 17:30 Improving AutoTVM Efficiency by Schedule Sharing
- > 17:40 Optimizing Sparse/Graph Kernels via TVM

Takeaways

- Industry needs an open standard compiler for DL
 - AWS working on the TVM stack

- We are eager to collaborate with the community
 - Talk to us, we have 10+ people here today!

- We are hiring!
 - Write to Yida Wang (<u>wangyida@amazon.com</u>), Zhi Chen (<u>chzhi@amazon.com</u>), or Vin Sharma (<u>vinarm@amazon.com</u>)