
© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Yida Wang and Zhi Chen
AWS AI

Deep Learning Compiler



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

A reduced snapshot of AWS AI

ML FRAMEWORKS & 
INFRASTRUCTURE

AMAZON SAGEMAKER

AI SERVICES

GPUs and
CPUs

Elastic
Inference Inferentia FPGA

ML
Marketplace

Model
training

Model
tuning

SageMaker
Autopilot

SageMaker
Neo

Amazon
Rekonition

VISION

Amazon
Polly

Amazon
Transcribe

Amazon
Translate

Amazon
Comprehend

SPEECH TEXT

…

…

…



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Performance
optimization

Training

Accelerator
Dynamic
modelsRuntime

Integration

Auto-
tuning

Scheduling
managementTutorial

Quantization

Graph
Optimization

Sparsity
Operator
coverage

Benchmarking

Deep learning compiler projects at AWS AI

Community
service

Amazon SageMaker Neo



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

QNN Dialect
-- Animesh Jain



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

How to consume a pre-quantized model via TVM?

Option 1 – Completely add new ops from scratch
• New Relay passes and TVM schedules required

• AlterOpLayout, Graph Fusion etc require work/operator
• No reuse of existing Relay and TVM infrastructure

Option 2 – Lower to a sequence of existing Relay operators
• We introduced a new Relay dialect – QNN to encapsulate this work
• Complete reuse of Relay pass infrastructure
• Possible reuse of TVM schedules (only to some extent)



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

QNN Dialect

• Design operators that satisfy many framework operators
• qnn.quantize, qnn.dequantize, qnn.requantize
• qnn.conv2d, qnn.dense
• qnn.concatenate
• qnn.add, qnn.mul

• QNN operators will be lowered to Relay operators

• QNN Optimization passes
• Some optimizations are easier at QNN level
• Intel x86 VNNI requires conv input dtypes to uint8 x int8



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Lowering of Qnn.Quantize

fn (%input_data: Tensor[(2, 5), float32]) {
qnn.quantize(%input_data, out_dtype="uint8", output_zero_point=127, output_scale=0.5f)

}

def @main(%input_data: Tensor[(2, 5), float32]) -> Tensor[(2, 5), uint8] {
%0 = divide(%input_data, 0.5f /* ty=float32 */) /* ty=Tensor[(2, 5), float32] */;
%1 = round(%0) /* ty=Tensor[(2, 5), float32] */;
%2 = cast(%1, dtype="int32") /* ty=Tensor[(2, 5), int32] */;
%3 = add(%2, 127 /* ty=int32 */) /* ty=Tensor[(2, 5), int32] */;
%4 = clip(%3, a_min=0f, a_max=255f) /* ty=Tensor[(2, 5), int32] */;
cast(%4, dtype="uint8") /* ty=Tensor[(2, 5), uint8] */

}



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Lowering of Qnn.Conv2D

For zero-centered zero point, the lowering will have just nn.conv2d

fn (%data: Tensor[(1, 3, 2, 3), uint8], %weight: Tensor[(3, 3, 2, 2), uint8]) {
qnn.conv2d(%data, %weight, … , out_dtype="int32", input_zero_point=1, kernel_zero_point=1)}

def @main(%data: Tensor[(1, 3, 2, 3), uint8], %weight: Tensor[(3, 3, 2, 2), uint8]) -> Tensor[(1, 3, 1, 2), int32] {
%0 = nn.conv2d(%data, %weight, … , out_dtype="int32") /* ty=Tensor[(1, 3, 1, 2), int32] */;
%1 = cast(%data, dtype="int32") /* ty=Tensor[(1, 3, 2, 3), int32] */;
%2 = multiply(%1, 4 /* ty=int32 */) /* ty=Tensor[(1, 3, 2, 3), int32] */;
%3 = nn.avg_pool2d(%2, pool_size=[2, 2]) /* ty=Tensor[(1, 3, 1, 2), int32] */;
%4 = sum(%3, axis=[1], keepdims=True) /* ty=Tensor[(1, 1, 1, 2), int32] */;
%5 = multiply(1 /* ty=int32 */, %4) /* ty=Tensor[(1, 1, 1, 2), int32] */;
%6 = subtract(%0, %5) /* ty=Tensor[(1, 3, 1, 2), int32] */;
%7 = cast(%weight, dtype="int32") /* ty=Tensor[(3, 3, 2, 2), int32] */;
%8 = sum(%7, axis=[1, 2, 3]) /* ty=Tensor[(3), int32] */;
%9 = reshape(%8, newshape=[1, 3, 1, 1]) /* ty=Tensor[(1, 3, 1, 1), int32] */;
%10 = multiply(1 /* ty=int32 */, %9) /* ty=Tensor[(1, 3, 1, 1), int32] */;
%11 = subtract(12 /* ty=int32 */, %10) /* ty=Tensor[(1, 3, 1, 1), int32] */;
add(%6, %11) /* ty=Tensor[(1, 3, 1, 2), int32] */}

Asymmetric



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Proof of Concept on TFLite models

• Metric – Latency in ms for batch size = 1
• Comparable accuracies
• 1.7x speedup on Inception asymmetric quantized model
• Symmetric model improves the speedup to 2.8x

Unit: ms



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

How Can We Make It Better?
Framework Pre-quantized Graph

MxnetTF …. parsers using

QNN Graph

QNN Dialect

QNN passes

Target-independent Relay passes

Target-optimized Int8 Relay Graph

Intel x86 ARM CPU Nvidia GPU ARM  GPU …. schedules

Relay Int8 Graph

Target-dependent Relay layout opt



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

New Amazon EC2 instances
-- Hongbin Zheng, Yizhi Liu, Haichen Shen,

and many people in Annapurna Labs



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Amazon EC2 Inf1 instances

• Powered by AWS Inferentia
• Low latency, 3x higher throughput, up to 40% lower cost-per-

inference compared to G4
• Up to 2,000 TOPS at sub-millisecond latency
• Integrated with popular ML frameworks TensorFlow, PyTorch

and MXNet



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

AWS Inferentia Chip

Four NeuroCores per chip customized tensor-level optimization

Two-stage memory
hierarchy: large on-chip

cache and commodity DRAM
Proactive data movement management

Fast chip-to-chip
interconnect via specialized

communication protocol
Model parallelism in pipeline



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Amazon EC2 M6g, R6g, C6g instances

• Powered by ARM-based AWS Graviton2 processors
• 4x more compute cores, 5x faster memory, and 7x the

performance of initial Graviton offering
• 40% price/performance advantage over current x86-based

instances



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

ML inference on Graviton2

• General-purposed CPU is capable of doing machine
learning/deep learning inference

• Check out our paper Optimizing CNN Model Inference on CPUs at
USENIX ATC ’19

• Compared to M5, M6g does faster model inference with
lower price



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Dive into Deep Learning Compiler
-- Mu Li and Yida Wang



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

A typical conversation

Customer/user/new hire/… Us/and maybe you…

How to use TVM to do…

We can do the following steps…

Cool, is there any tutorial?

Yes, for this check this, for that
check that…

I failed. TVM is REALLY
REALLY hard to get
started/use/deploy…



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

From discuss.tvm.ai



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Dive into Deep Learning (https://D2L.ai)

• An interactive deep learning book with code, 
math, and discussions

• GitHub: 18,000 stars, 200 contributors
• Presented in multiple languages: Chinese,

English, Japanese, Korean
• The Chinese book is the No. 1 best seller at 

the largest Chinese online bookstore
• The English book is available in preview

https://d2l.ai/


© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

D2L adoption

• Adopted as a textbook by 40+ global universities and Amazon Machine 
Learning University

Ø Carnegie Mellon University
Ø Indian Institute of Technology Bombay
Ø Massachusetts Institute of Technology
Ø Peking University
Ø Shanghai Jiao Tong University
Ø University of California, Berkeley
Ø University of Illinois at Urbana-Champaign
Ø University of Science and Technology of China
Ø Zhejiang University



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

D2L Compiler: http://tvm.d2l.ai

• A systematic tutorial to the beginners who want to USE TVM,
and more broadly, who’d like to take DLC-101

• Python notebook based, runnable on Colab
• V0.1 released, 22 sections, covering getting started and basic

operator-level optimization
• Call for contributors

http://tvm.d2l.ai/


© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

SageMaker Neo
-- Amazon SageMaker Neo team

https://aws.amazon.com/sagemaker/neo/


© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

SageMaker Neo: Train once, Run anywhere

Neo

ONNX

SageMaker Algorithms



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Amazon SageMaker Neo Pipeline

Input models

Compilation
configuration

Compilation S3 bucket



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Integration with SageMaker NEO

TensorFlow
Parser

MXNet
Parser

PyTorch
Parser

ONNX
Parser

XGBoost
Parser

Contrib Compiler

TVM
Treelite

LLVM CUDA OpenCL

Compiled Model

Neo Runtime

Contrib Runtime

X86 AARCH64 RISC-V GPU FPGA ASIC

EC2 Instance Device

Relay

Compiler Runtime



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Bring Your Own Codegen to TVM
-- Zhi Chen and Cody Yu



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Why?

conv

conv + max pool

conv + max pool

conv

conv + max pool

conv

...

R
esN

et-50

conv + up sample

Detected
Big

Objects

concatenate + conv
Detected
Medium
Objects

conv + up sample

concatenate + conv
Detected

Small
Objects

conv

conv

conv + max pool

conv + max pool

conv

conv + max pool

conv
...

R
esN

et-50

conv + up sample

Detected
Big

Objects

concatenate + conv NMS
Detected
Medium
Objects

conv + up sample

concatenate + conv
Detected

Small
Objects

conv

On CPU/GPU

On Your device

NMS

Your device does
not support!



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

How does it look like?

Relay IR

Your Codegen
LLVM, CUDA, 
Metal, VTASerialized 

External Library

Relay Runtime
(VM, Graph Runtime, Interpreter)

Your runtime

Target Device
General Devices

(CPU/GPU/FPGA)

Annotation

Partitioning

Relay optimization/compilation

def @main(%x, %y) {
%0 = fn (%gcc_input0, %gcc_input1, 

External="gcc", FuncName="gcc_0", Primitive=1) {
add(%gcc_input0, %gcc_input1)

};
%0(%x, %y);
}

def @main(%x, %y) {
add(%x, %y)

}

DSOModule/JSon

JSON runtime



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

How to Integrate?

• Codegen
§ With engine DNNL, TensorRT

§ Generate artifacts that can be loaded/saved through existing TVM runtime 
module, e.g. DSOModule

§ Without engine
§ Produce library wrappers that are compatible to TVM and generate DSOModule

• Runtime
§ Reuse existing TVM runtime
§ Custom runtime could be imported to TVM runtime
§ Invoke integrated runtime directly through PackedFunc



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Pass Manager
-- Zhi Chen



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

What does it do?

• Traditional compiler
§ Make pass developers’ life easier
§ Maintain pass info, i.e. pass dependencies
§ Keep analysis info update to date

• Deep learning framework
§ PyTorch and Keras Sequential, Gluon Block
§ Allow flexible customized pipeline



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

How does it work?

Relay IR

Relay Runtime
(VM, Graph Runtime, Interpreter)

Compilation and Optimization (PM)

Module Pass Function Pass Sequential Pass

Optimized Relay IR• Need global info
• Add/remove a function to module
• Lambda lift, Inline

• Only need information in a function scope
• Add/modify/remove expressions in a function
• SimplifyInference, fusion, constant folding

• Apply a sequence of passes
• Help developers to customize optimization pipeline
• Fold scale axis, hardware dependent/independent 

passes



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

How to Customize Your Optimization Pipeline?

seq1 = relay.transform.Sequential([a, b, c])
seq2 = relay.transform.Sequential([d, e, f])

with build_config(opt_level=2): # hardware independent
mod1 = seq1(mod)

with build_config(opt_level=3, disabled_pass=[e]): # hardware dependent
mod2 = seq2(mod1)

Tutorial: https://docs.tvm.ai/tutorials/dev/relay_pass_infra.html#sphx-glr-tutorials-dev-relay-pass-infra-py

https://docs.tvm.ai/tutorials/dev/relay_pass_infra.html


© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

AWS in rest of today

Ø 12:10 Dynamic Execution and Virtual Machine

Ø 13:20 Dynamic Model - Graph Dispatching

Ø 17:30 Improving AutoTVM Efficiency by Schedule Sharing

Ø 17:40 Optimizing Sparse/Graph Kernels via TVM



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Takeaways

• Industry needs an open standard compiler for DL
• AWS working on the TVM stack

• We are eager to collaborate with the community
• Talk to us, we have 10+ people here today!

• We are hiring!
• Write to Yida Wang (wangyida@amazon.com), Zhi Chen 

(chzhi@amazon.com), or Vin Sharma (vinarm@amazon.com)

http://amazon.com
http://amazon.com
http://amazon.com

