
Krzysztof Parzyszek

Qualcomm Innovation Center, Inc.

TVM at Qualcomm 
Technologies

University of WashingtonDecember 5, 2019



2Qualcomm Hexagon is a product of Qualcomm Technologies, Inc. and/or its subsidiaries.

Goals

• Add support for Qualcomm® Hexagon™ architecture to TVM
• Low power processor with DSP features (32 32-bit registers, vector operations on 64-bit register pairs)
• HVX coprocessor with 128-byte vectors (32 1024-bit registers)
• Rich instruction set (both core and HVX) for efficient integer numerical computations
• Well suited for integer ML workloads

• Make TVM fully exploit capabilities of Hexagon processors
• Instruction complexity makes it hard for C/C++ compilers to generate them
• Having a domain-specific programming environment makes it easier to utilize complex hardware features

• Make TVM available to our customers for all available Hexagon chips
• Including scalar cores and those with HVX
• Experience with Halide shows that having a DSL is very useful for our customers



3

Current status

• Internal releases of TVM available within Qualcomm Technologies, Inc.

• Collecting information for future development plans
• Feedback from users
• Performance measurements

• Developing kernels to expand our ML offerings



4

What we have done so far

infer.py schedule codegen runtime It’s a
cat.

• Support all scheduling directives: 
parallel, prefetch, vectorize, etc.

• Hexagon-specific schedules for a 
set of operations

• Basic LLVM-based codegen to 
implement necessary functionality

• Runtime for enabling execution on Hexagon simulator
• Execute Hexagon kernels on a PC

• Runtime for Android enabling execution on Hexagon 
hardware
• Includes FastRPC communication layer

• Use bind.thread_axis("pipeline")
to mark a kernel for offloading, not 
needed for standalone ops

E
xe

c



5

What we have done so far: technicalities

• Engineering notes
• Complex HVX instructions can be generated via tensorization, 

but not automatically
• Simulator only supports single thread
• HVX code generated via “vectorize”, or via auto-vectorization in 

LLVM, scalar vectors only via “vectorize”
• Support Hexagon V62 and later, scalar cores and HVX
• Use tvm.target.hexagon(…) to select build target, parameters 

allow CPU selection, simulator configuration, LLVM options
• Device runtime supports ADSP and CDSP

• Performance
• Comparing with hand-written assembly: favorable results for 

simple ops on small data sets

TVM runtime TVM runtime

Host

Hexagon

TVM runtime

Simulator FastRPC

Custom written

libtvm_runtime.so



6

Special use case: ML op compiler

•Use TVM to compile ops for other 
applications

• Such ops will execute without TVM 
runtime
• Create a shim runtime that implements TVM/RT 

API on top of another runtime

• Such ops may also need to meet 
additional requirements
• The other ML framework’s runtime may require 

extra information be passed from the calling op

•Qualcomm AI Research team will 
present a demo at NeurIPS

ML framework

Local runtime

Operator library

Some-op TVM-op

TVMop.py

TVM

Shim RT

Object file



7

Challenges

• Prefetch
• Hexagon has a “rectangular” prefetch (l2fetch), while TVM assumes a cache-line prefetch
• Invented “prefetch” intrinsic, delayed expansion from storage flattener until TVM intrinsic expansion
• Will need to work with the community on integrating this into TVM sources

• Propagating buffer alignment information
• Storage alignment needs to be passed to compute functions and to outlined device functions

• Storage control
• Stack limit and default alignment are hardcoded; HVX needs 128-byte alignment, but scalar code does not, 

Hexagon stack can be much larger than the limit

• Need to add custom attributes
• Some internal use cases require special parameters be passed to ops, we invented an attribute to annotate 

such parameters

• Routine application of specific lowering passes



8

Future work

• Support compilation of Relay directly to Hexagon code
• Build entire graphs and subgraphs for Hexagon

• Extend code generation to exploit more HVX instructions and features

• Upstream
• Make our backend available in the public repository
• Publish bug fixes
• Contribute our extensions and enhancements to the target-independent code

• We have had a very positive experience with TVM
• Using TVM as a ML compiler for Hexagon shows a lot of potential

• Hope to work closely with TVM community



Follow us on:

For more information, visit us at:

www.qualcomm.com & www.qualcomm.com/blog

Thank you

Nothing in these materials is an offer to sell any of the 
components or devices referenced herein.

©2018-2019 Qualcomm Technologies, Inc. and/or its 
affiliated companies. All Rights Reserved.

Qualcomm is a trademark of Qualcomm Incorporated, 
registered in the United States and other countries. Other 

products and brand names may be trademarks or 
registered trademarks of their respective owners.

References in this presentation to “Qualcomm” may mean Qualcomm 
Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries 
or business units within the Qualcomm corporate structure, as 
applicable. Qualcomm Incorporated includes Qualcomm’s licensing 
business, QTL, and the vast majority of its patent portfolio. Qualcomm 
Technologies, Inc.,

a wholly-owned subsidiary of Qualcomm Incorporated, operates, along 
with its subsidiaries, substantially all of Qualcomm’s engineering, 
research and development functions, and substantially all of its product 
and services businesses, including its semiconductor business, QCT.


