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Goals

• Add support for Qualcomm® Hexagon™ architecture to TVM
• Low power processor with DSP features (32 32-bit registers, vector operations on 64-bit register pairs)
• HVX coprocessor with 128-byte vectors (32 1024-bit registers)
• Rich instruction set (both core and HVX) for efficient integer numerical computations
• Well suited for integer ML workloads

• Make TVM fully exploit capabilities of Hexagon processors
• Instruction complexity makes it hard for C/C++ compilers to generate them
• Having a domain-specific programming environment makes it easier to utilize complex hardware features

• Make TVM available to our customers for all available Hexagon chips
• Including scalar cores and those with HVX
• Experience with Halide shows that having a DSL is very useful for our customers
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Current status

• Internal releases of TVM available within Qualcomm Technologies, Inc.

• Collecting information for future development plans
• Feedback from users
• Performance measurements

• Developing kernels to expand our ML offerings
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What we have done so far

infer.py schedule codegen runtime It’s a
cat.

• Support all scheduling directives: 
parallel, prefetch, vectorize, etc.

• Hexagon-specific schedules for a 
set of operations

• Basic LLVM-based codegen to 
implement necessary functionality

• Runtime for enabling execution on Hexagon simulator
• Execute Hexagon kernels on a PC

• Runtime for Android enabling execution on Hexagon 
hardware
• Includes FastRPC communication layer

• Use bind.thread_axis("pipeline")
to mark a kernel for offloading, not 
needed for standalone ops
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What we have done so far: technicalities

• Engineering notes
• Complex HVX instructions can be generated via tensorization, 

but not automatically
• Simulator only supports single thread
• HVX code generated via “vectorize”, or via auto-vectorization in 

LLVM, scalar vectors only via “vectorize”
• Support Hexagon V62 and later, scalar cores and HVX
• Use tvm.target.hexagon(…) to select build target, parameters 

allow CPU selection, simulator configuration, LLVM options
• Device runtime supports ADSP and CDSP

• Performance
• Comparing with hand-written assembly: favorable results for 

simple ops on small data sets

TVM runtime TVM runtime

Host

Hexagon

TVM runtime

Simulator FastRPC

Custom written

libtvm_runtime.so
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Special use case: ML op compiler

•Use TVM to compile ops for other 
applications

• Such ops will execute without TVM 
runtime
• Create a shim runtime that implements TVM/RT 

API on top of another runtime

• Such ops may also need to meet 
additional requirements
• The other ML framework’s runtime may require 

extra information be passed from the calling op

•Qualcomm AI Research team will 
present a demo at NeurIPS

ML framework

Local runtime

Operator library

Some-op TVM-op

TVMop.py

TVM

Shim RT

Object file
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Challenges

• Prefetch
• Hexagon has a “rectangular” prefetch (l2fetch), while TVM assumes a cache-line prefetch
• Invented “prefetch” intrinsic, delayed expansion from storage flattener until TVM intrinsic expansion
• Will need to work with the community on integrating this into TVM sources

• Propagating buffer alignment information
• Storage alignment needs to be passed to compute functions and to outlined device functions

• Storage control
• Stack limit and default alignment are hardcoded; HVX needs 128-byte alignment, but scalar code does not, 

Hexagon stack can be much larger than the limit

• Need to add custom attributes
• Some internal use cases require special parameters be passed to ops, we invented an attribute to annotate 

such parameters

• Routine application of specific lowering passes
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Future work

• Support compilation of Relay directly to Hexagon code
• Build entire graphs and subgraphs for Hexagon

• Extend code generation to exploit more HVX instructions and features

• Upstream
• Make our backend available in the public repository
• Publish bug fixes
• Contribute our extensions and enhancements to the target-independent code

• We have had a very positive experience with TVM
• Using TVM as a ML compiler for Hexagon shows a lot of potential

• Hope to work closely with TVM community
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