

Improving AutoTVM Efficiency by Schedule Sharing

AWS AI

Cody Yu AWS Deep Engine Science

Motivation

Tuning MobileNet V2 1.0 on Nvidia V100 for 500 trails

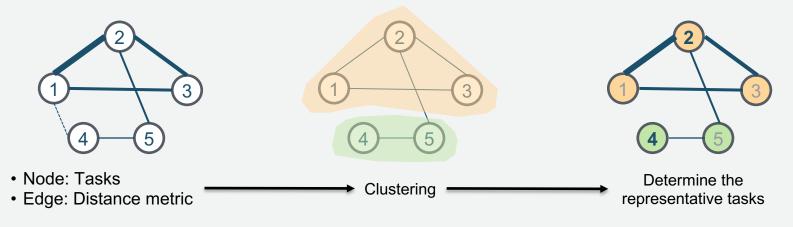
31 tasks, including

- conv2d
- depthwise conv2d

```
2104.64 s Done.
[Task 1/31]
             Current/Best: 946.31/1289.20 GFLOPS | Progress: (500/500)
[Task 2/31]
             Current/Best: 668.17/1049.02 GFLOPS | Progress: (500/500)
                                                                           1968.25 s Done.
                                                                           1951.28 s Done.
[Task 3/31]
             Current/Best: 783.52/ 897.95 GFLOPS | Progress: (500/500)
[Task 4/31]
             Current/Best: 1535.61/2011.77 GFLOPS | Progress: (500/500)
                                                                           2130.80 s Done.
[Task 5/31]
             Current/Best: 361.62/ 454.76 GFLOPS | Progress: (500/500)
                                                                           1576.12 s Done.
             Current/Best: 978.99/1541.32 GFLOPS | Progress: (500/500)
[Task 6/31]
                                                                           2365.66 s Done.
                                                                           2923.23 s Done.
[Task 7/31]
             Current/Best: 2904.66/3478.22 GFLOPS | Progress: (500/500)
[Task 8/31]
             Current/Best: 1570.40/1935.42 GFLOPS | Progress: (500/500)
                                                                           2422.44 s Done.
[Task 9/31]
             Current/Best: 2650.49/2888.28 GFLOPS | Progress: (500/500)
                                                                           2512.69 s Done.
[Task 10/31]
             Current/Best: 5150.11/5389.75 GFLOPS | Progress: (500/500)
                                                                           2796.52 s Done.
[Task 11/31]
             Current/Best: 1070.05/1403.03 GFLOPS | Progress: (500/500)
                                                                           2585.96 s Done.
[Task 12/31]
             Current/Best: 1735.87/2434.35 GFLOPS | Progress: (500/500)
                                                                           2648.54 s Done.
[Task 13/31]
             Current/Best: 1644.45/2162.78 GFLOPS | Progress: (500/500)
                                                                           2492.33 s Done.
[Task 14/31]
                                                                           3015.28 s Done.
             Current/Best: 2316.08/2963.59 GFLOPS | Progress: (500/500)
[Task 15/31]
             Current/Best: 3570.33/4043.73 GFLOPS | Progress: (500/500)
                                                                           2942.17 s Done.
[Task 16/31]
                                                                           2554.60 s Done.
             Current/Best: 1159.51/1486.77 GFLOPS | Progress: (500/500)
[Task 17/31]
                                                                           2131.96 s Done.
             Current/Best: 937.18/1152.14 GFLOPS | Progress: (500/500)
[Task 18/31]
             Current/Best: 1206.02/1675.35 GFLOPS | Progress: (500/500)
                                                                           2406.45 s Done.
[Task 19/31]
             Current/Best: 2167.02/2302.35 GFLOPS | Progress: (500/500)
                                                                           2560.77 s Done.
[Task 20/31]
                                                                           1654.92 s Done.
            Current/Best: 24.34/ 541.03 GFLOPS |
                                                    Progress: (500/500)
[Task 21/31]
             Current/Best: 1035.45/1338.88 GFLOPS | Progress: (500/500)
                                                                           2302.91 s Done.
                                                                           2249.21 s Done.
[Task 22/31]
            Current/Best: 1054.80/2099.63 GFLOPS |
                                                    Progress: (500/500)
[Task 23/31]
            Current/Best: 618.47/3150.01 GFLOPS | Progress: (500/500)
                                                                           1863.21 s Done.
                                                                           2481.23 s Done.
[Task 24/31] Current/Best: 627.86/1551.72 GFLOPS | Progress: (500/500)
[Task 25/31]
             Current/Best: 1000.60/1831.31 GFLOPS | Progress: (500/500)
                                                                           2704.17 s Done.
[Task 26/31] Current/Best: 2626.91/2953.95 GFLOPS | Progress: (500/500)
                                                                           2626.47 s Done.
[Task 27/31]
             Current/Best: 284.45/ 433.29 GFLOPS | Progress: (500/500)
                                                                           1432.13 s Done.
[Task 28/31]
            Current/Best: 599.56/ 924.07 GFLOPS | Progress: (500/500)
                                                                           1939.39 s Done.
[Task 29/31]
             Current/Best: 672.51/ 951.80 GFLOPS | Progress: (500/500)
                                                                           2099.23 s Done.
[Task 30/31]
             Current/Best: 2113.59/3039.97 GFLOPS | Progress: (500/500)
                                                                           2021.68 s Done.
[Task 31/31] Current/Best: 19.49/ 97.05 GFLOPS | Progress: (500/500)
                                                                           1608.51 s Done.
```

One task took about 40 mins

→ ~19 hours in total


Motivation

- Observations
 - AutoTVM tunes every task in a model from scratch
 - The high quality schedules of some tasks in a model are similar
- Proposed Solution
 - Only tune representative tasks and share their best schedules to others

Schedule Sharing among AutoTVM Tasks

- Idea
 - Two tasks can share schedules if their tuning spaces are similar
- Approach
 - Cluster tasks with a distance metric
 - Identify a centric (representative) task in each cluster and only tune them
 - Share their best schedules to other tasks in the same cluster

Evaluation Results and RFC

- Selected 7 models from Gluon CV model zoo
- Tuned selected tasks (~5-7) for 3,000 trials on Nvidia V100
- Achieve on average 84% performance with only 28% tuning time

Model	Tuning Time w/o Sharing (mins)	Perf. w/o Sharing (ms)	Tuning Time w. Sharing (mins)	Perf. w. Sharing (ms)	Used Time	Achieve Perf.
MobileNet V2 1.0	1185	0.74	404	0.78	34%	95%
ResNet 50 V1	1666	2.27	358	3.7	21%	61%
VGG 19 BN	479	5.08	169	6.36	35%	80%
SqueezeNet 1.1	574	0.54	167	0.5	29%	108%
DenseNet 121	2670	2.99	377	3.02	14%	99%
Yolo3 MobileNet1.0 voc	2784	5.4	774	7.16	28%	75%
SSD512 ResNet50 V1 voc	3426	8.47	1150	5.65	34%	67%
				Average	28%	84%

