Scalable Distributed Training with
Parameter Hub:
a whirlwind tour
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Deep Learning constitutes an important workload in cloud
today.

Major cloud providers all have an ecosystem for cloud
learning.
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Server demand for DL inference across data centers nearly
quadrupled in less than 2 years. Source: Facebook
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Distributed Training
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COORDINATED PARAMETER EXCHANGE
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Distributed Training Today
IN THE CONTEXT OF THE CLOUD
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Distributed Training Today
FORWARD AND BACKWARD PASSES IN WORKER
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Distributed Training Today
AGGREGATION AND OPTIMIZATION IN PS
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Distributed training is communication bound

ResNet 269
Problem gets worse 1.8 Bl GPU idle, waiting on network
over time: Shifting GPU and Network active
bottleneck. 13 I
With modern GPUs & 0.9
most of the time is spent 0 45 I . I
on communication. '
Making GPUs faster will 0

do little to increase GRID 520 K80 M60 V100

throughput 2012 2014 2015 2017

Wasting compute
resources. 13



Distributed training is communication bound
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Bottlenecks in DDNN training
MAPPING OF TRAINING WORKLOAD TO THE

CLOUD IS INEFFICIENT.
etwq@
Core
A/

ToR ToR

*

PS 1 Worker 2

15



Bottlenecks in DDNN training
FRAMEWORK BOTTLENECKS
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Bottlenecks in DDNN training

FRAMEWORK BOTTLENECKS
ResNet 269 I
Inception - Compute
B Data Copy and Communication
GoogleNet N | B Aggregator
B Optimizer
AlexNet T B Synchronization and other Overheads
0 0.4 0.8 1.2 1.6

Seconds
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Bottlenecks in DDNN training
MAPPING OF TRAINING WORKLOAD TO THE CLOUD
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Bottlenecks in DDNN training
BANDWIDTH BOTTLENECK
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Bottlenecks in Cloud-based DDNN training
INSUFFICIENT BANDWIDTH

Minimum bandwidth required 1300 Gbps
for each of the popular NNs for o
communication to not 1000 Gbps
bottleneck computation? E—

8 workers, GTX 1080 Ti,
central parameter servers.
MxNet

25 Gbps
10 Gbps
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Bottlenecks in Cloud-based DDNN training
MAPPING OF TRAINING WORKLOAD TO THE CLOUD
IS INEFFICIENT.
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Bottlenecks in Cloud-based DDNN training
DEPLOYMENT-RELATED OVERHEAD
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Bottlenecks in Cloud-based DDNN training
DEPLOYMENT-RELATED OVERHEAD

123456 7 8

* Transient congestion, or 1 ciktor s 113 4.5 7 9 Gbps
oversubscription by 5 Cluster 2:26 8
design

* Cross-rack
communication cost is
higher than Intra-rack
communication.

Hosts

4 Gbps
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Parameter Hub Optimizations
CODESIGNING SOFTWARE, HARDWARE WITH
CLUSTER CONFIGURATION FOR EFFICIENT CLOUD-

BASED DDNN TRAINING

—
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Eliminating framework bottlenecks:
PHub Optimizations: streamlining DDNN training pipeline
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Eliminating framework bottlenecks:
PHub Optimizations: streamlining DDNN training pipeline

/ Obfimiiation \

26



Software Optimizations

GRADIENTS

CPU

AHOWIN




Software Optimizations

CPU

GRADIENTS

AHOWIN




Requires synchronization.

Software Optimizations
GRADIENT AGGREGATION AND OPTIMIZATION

Great locality. No synchronization

Each core reads the input Q
from different workers and
writes to different locations to
the output queue
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Great locality. No synchronization

A 4

For each input Q, launch a
series of threads for
aggregation. This is used in
MxNet. (Wide Aggregation)

—b

—»

Sequentially aggregates the
same portion of gradients
within each queue. (Tall
Aggregation)

Too much coherence and
synchronization

Organize processors into
hierarchy. Perform NUMA
aware tree reduction.
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Software Optimizations
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Great locality. No synchronization
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Aggregation)
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Software Optimizations
TALL AGGREGATION AND OPTIMIZATION

- Chunk a gradient into a series of virtual
gradients deterministically.

- Avirtual gradient is mapped to a
particular core on the server.

Core Mappings

Gradient Array for Key 0 from 8 workers
29
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Software Optimizations
TALL AGGREGATION AND OPTIMIZATION

- Chunk a gradient into a series of virtual
gradients deterministically.

- Avirtual gradient is mapped to a
particular core on the server.

- Virtual gradients are transferred
independently.

- Achunk is only processed by a single
core : maintaining maximum locality.

Aggregated

>

Core Mappings
1 1 1

Gradient Array for Key 0 from 8 workers
29



Software Optimizations
TALL AGGREGATION AND OPTIMIZATION

When Aggregation is done, PHub:
- PHub optimizes a chunk with the same
core that aggregates that chunk.

Aggregated

N 8 workers
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Software Optimizations
TALL AGGREGATION AND OPTIMIZATION

When Aggregation is done, PHub:

- PHub optimizes a chunk with the same
core that aggregates that chunk.

- FP32-level streaming aggregation and
optimization to hide communication
latency.

Optimized

Aggregated

m 8 workers
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Eliminating deployment bottlenecks:
PHub hierarchical reduction: reducing cross rack traffic

B
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Eliminating deployment bottlenecks:
PHub hierarchical reduction: reducing cross rack traffic
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Two-Phase Hierarchical Aggregation
RACK SCALE PARAMETER SERVICE
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Two-Phase Hierarchical Aggregation
RACK SCALE PARAMETER SERVICE
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Two-Phase Hierarchical Aggregation
ADAPTING TO THE DATACENTER NETWORK TOPOLOGY
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Two-Phase Hierarchical Aggregation
ADAPTING TO THE DATACENTER NETWORK TOPOLOGY

Cluster
Network
N times traffic
reduction!
Rack 2. Inter-Rack
aggregation
ToR 99res ToR
Aggregator 1. Intra-Rack central Aggregator
aggregation
Worker/PS 1 Worker/PS 1

Worker/PS N Worker/PS 2
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Efficient DDNN Training in Commercial Cloud
ACTIVE TOPOLOGY PROBING

VMs
Azure/EC2
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Efficient DDNN Training in Commercial Cloud
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DPDK-based Clustering Automagic Schedule
- latency Probe Algorithms Q Generation S =
— > . an > > n

VMs Distance Inferred Network Hierarchical
Azure/EC2 Matrix Topology* Reduction
Plan




Performance in commercial cloud with
PHub

2 10 9.6
2 8
1 5
1 3 1.8
0 o
Azure (Standard NC6) EC2 (P3.2xlarge) Azure (Standard NC6) EC2 (P3.2xlarge)
B VS Facebook Gloo VS Ring Reduction

Windows Azure and Amazon EC2. 32 instances. Up to 10 Gbps. Standard_NC6: Nvidia
K80. Batch Size = 512. P3.2xLarge: Nvidia V100. Batch Size = 512. Facebook Caffe2/
Pytorch. ResNet 50. 18



Framework Integration
Support for Mxnet/Pytorch/Caffe2.

var pHub = std::make shared< > ( keySize, appAddrs,
) i

pHub->Reduce ()




Optimization

AutoTVM

Edge Cloud ASIC Hardware

FPGA FPGA Fleet

/ Active Topology
‘ A 3 Probing

Groundwork for bringing TVM to the distributed world for
training and inference, on commercial cloud, or in your own
cluster.
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Hardware
Parameter Hub

Balanced computation and
communication resource.

- 10 ConnectX-3 Card

- 560+Gbps Network BW

- 800Gbps PCle

- Fully supported by Software
Parameter Hub



Hardware
Parameter Hub

35GB/s aggregation throughput.

Supports 100+ ResNet-50
training nodes with a single
machine.

Gloo HD Gloo Ring PS-Lite PHub SW



Hardware

Parameter Hub

ResNet-50.
See paper for detailed estimates.
Better training throughput/$.
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Parameter Hub

ResNet-50.
See paper for detailed estimates.
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Better training throughput/$.




