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Relay



How do we represent 
deep learning?

• Build parametric functions which approximate impossible or hard to program 
functions.

• In order to perform deep learning we need:

• To represent computation

• To differentiate

• To optimize
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LSTM Training LoopResnet, DCGAN
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LSTM Training LoopResnet, DCGAN



 for i in range(…):
    inp, hs = …

out, nhs = RNNCell(inp, hs)

Python

Relay

 for i in range(…):
    input, hs = …

    out, nhs = RNNCell(inp, hs)



Challenges

• How do we represent control-flow, functional abstraction, and recursion?

• How do we represent and optimize training?

• How do we perform end-to-end whole model optimization?
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Relay

• Relay is the high level IR of the TVM stack.

• Generalize computation graphs to differentiable programs.

• Enables whole-program optimization for deep learning.

• Composed of new IR, auto-diff, optimizer, and backends.

• Relay is open source.
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Initial Results

• Relay shows promising initial results when evaluated in inference tasks:

• We are able fully optimize models such as generative RNNs, outperforming 
PyTorch by up to 3x on model inference.

• We demonstrate performance comparable to NNVM and outperform 
TensorFlow and TensorFlow Lite.

• We show that Relay can be executed on FPGAs, resulting in up to an 11x 
performance improvement over baseline.
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IR

• A functional IR, an ML-like (ReasonML, OCaml, SML, …) language tailored to 
machine learning.

• Features closures, reference,  ADTs, and primitive operators, tensors are the 
primary value type.

• We can use this to represent full-models including a generative RNN and training 
loops.

• Functional style makes it possible to analyze and transform as pure data-flow.
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def @generate(n, i, h, …):
  if (n == 0)
    []
  else
    let (output, new_hidden) =
      @rnn_cell(i, h, …);
    output + @generate(
        n - 1, output, new_hidden, …)

Parameters

Loop Counter

Functional style loop



Typing

• Typing these programs introduces a few challenges:

• Need static Tensor shape information to match accelerator primitives, optimize 
aggressively, and provide better errors.

• Provide flexible typing for operators which contain shape input and output 
relationships such as broadcast, flatten, concat, squeeze, and more.
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Tensor<f32, (32, 3, 32, 32)>

Tensor : (BaseType, Shape) -> Type

Float : (Width: Int, Lanes: Int) -> BaseType

f32 = Float<32, 1>

4-d Tensor 
N * Channels * Height * Width



Type Relation

• Operators, the primitive building block of machine learning, are hard to type 
check (e.g. preconditions must hold over input tensors).

• A call can contain a series of relations which must hold over the input types. 

• Enables very flexible typing of operators.

• For example can implement variable arguments using relations (concat) and input/
output relationships (broadcast).
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add : 
forall (Lhs: Type, Rhs: Type, Out: Type),
(Lhs, Rhs) -> Out 

where Broadcast(Lhs, Rhs, Out)

Broadcast(Tensor<f32, (3, 4, 5)>, Tensor<f32 (n, 3, 4, 5), Tensor<f32, (n, 3, 4, 5)>)

Broadcast(Tensor<f32, (1, 5)>, Tensor<f32, (n, 5)>, Tensor<f32, (n, 5)>)

For example we can type broadcasting addition:

Broadcasting is a tricky rule often employed in machine learning:
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concat : 
forall (Args: Type, Out: Type),
(Args) -> Out 

where IsTuple(Args), Concat(Args, Out)

Or more complex constraints such as: 



Optimizations
• We implement various optimizations over these programs including:

• Standard Optimizations

• Fusion

• Constant Propagation

• Accelerator Specific Optimizations

• Quantization (see Ziheng’s talk)

• FoldScaleAxis

• Data Packing
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Backends

• We implemented multiple execution backends to demonstrate the versatility 
of Relay as an IR.

• Each backend builds on TVM’s existing low level Tensor IR (HalideIR).

• TVM is used for operators, but the rest of the program must be executed (e.g. 
allocation, control-flow, recursion).

!22



Operator Compilation
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TVM operators.so

def @my_func(…) {
…

}



Graph Runtime

• TVM’s existing execution pipeline, can 
execute a subset of Relay programs.

• Requires a graph, a shared library 
containing operators, and parameters

GraphRTS

+ operators.so
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Interpreter

• A reference interpreter for Relay.

• Implements the reference semantics.

• Uses naive recursive AST traversal for interpreting control flow.

• Uses JIT compilation for operators.
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AoT Compiler

• A case study of what Relay IR affords, we built prototype compiler in less than 
3 weeks.

• Generates code for CPU/GPU, FPGA support in the future.

• Removes interpretation overhead and enables optimization.

• Written as a pure Python library and uses Relay as dependency.
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Ahead of time compiler

def @my_func(…) {
…

}
Standard 
Optimize

AoT 
Optimize LittleCpp Clang

librelay_aot_my_func.so
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f = compile(my_func)
f(…)



VTA

• VTA is a target for Relay.

• We can compile high level models written in 
Frameworks such as MxNet directly to Relay. 

• Generic compilation to VTA will be 
upstreamed soon after the conference. 
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VTA

• VTA is a target for Relay.

• We can compile high level models written in 
Frameworks such as MxNet directly to Relay. 

• Generic compilation to VTA will be 
upstreamed soon after the conference. 
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Evaluation
• Relay supports expressive models:

• We demonstrate Relay’s ability to optimize full models such as generative RNNs, 
beating PyTorch by up to 3x.

• Relay provides competitive performance:

• We demonstrate better than TensorFlow and on par performance with NNVM on a 
suite of models.

• Relay supports customized hardware:

• We show how Relay and TVM can be used to execute on FPGA based accelerators, 
bring 11x performance improvement over baseline.
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Relay-Interpreted RNN
Relay-Interpreted Cell

Relay-Compiled Cell
Relay-Compiled RNN

PyTorch



Relay

Relay

CNN Results

Relay
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VTA Results
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Future Work

• Evaluating Relay on training tasks.

• AutoRelay: applying ideas from AutoTVM to Relay. 

• A high-level full differentiable programming language frontend (i.e Python 
frontend, Haskell DSL).

• Novel analyses and optimizations for DL (e.g automatic differential privacy).

• Non-standard data types (e.g unums, posits).
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Lessons Learned

• Using a full program representation we were able to:

• Rephrase shape inference as type checking.

• Use Relay as platform to develop novel optimizations such as automatic 
quantization.

• Execute Relay programs via a variety of backends and hardware devices.

• Demonstrate an increase in expressiveness does not come at the cost of 
performance. 
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Conclusion

• Relay is a new intermediate representation for 
optimizing deep learning programs.

• We apply the straightforward insight that 
machine learning models are just programs.

• This generalization enables support for a 
greater range of programs, new optimizations, 
and the ability to target a wide range of devices.

• Excited about production and research 
collaborations.

http://sampl.cs.washington.edu

http://tvm.ai
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