
Relay: a high level differentiable IR
Jared Roesch

TVMConf
December 12th, 2018

!1

!2

This represents months of joint work with lots of great folks:

TVM Stack

Optimization

AutoTVM

AutoVTA

High-Level Differentiable IR

Tensor Expression IR

LLVM, CUDA, Metal VTA

Edge
FPGA

Cloud
FPGA

ASIC Hardware
Fleet

!3

Relay

How do we represent
deep learning?

• Build parametric functions which approximate impossible or hard to program
functions.

• In order to perform deep learning we need:

• To represent computation

• To differentiate

• To optimize

!4

!5

Existing Approach

Computation Graph

Tensor Expression IR

LLVM, CUDA, Metal VTA

Edge
FPGA

Cloud
FPGA

ASIC

!5

LSTM Training LoopResnet, DCGAN

!6

Existing Approach

High-Level Differentiable IR

Tensor Expression IR

LLVM, CUDA, Metal VTA

Edge
FPGA

Cloud
FPGA

ASIC

!6

LSTM Training LoopResnet, DCGAN

 for i in range(…):
 inp, hs = …

out, nhs = RNNCell(inp, hs)

Python

Relay

 for i in range(…):
 input, hs = …

 out, nhs = RNNCell(inp, hs)

Challenges

• How do we represent control-flow, functional abstraction, and recursion?

• How do we represent and optimize training?

• How do we perform end-to-end whole model optimization?

!8

Relay

• Relay is the high level IR of the TVM stack.

• Generalize computation graphs to differentiable programs.

• Enables whole-program optimization for deep learning.

• Composed of new IR, auto-diff, optimizer, and backends.

• Relay is open source.

!9

Initial Results

• Relay shows promising initial results when evaluated in inference tasks:

• We are able fully optimize models such as generative RNNs, outperforming
PyTorch by up to 3x on model inference.

• We demonstrate performance comparable to NNVM and outperform
TensorFlow and TensorFlow Lite.

• We show that Relay can be executed on FPGAs, resulting in up to an 11x
performance improvement over baseline.

!10

Text
Format

AST Optimizer

Compiled
Operators

Operator
Language

On-disk
representat

ion

Model
Importer

DSL

Ahead of
time

compiler

Reference
Interpreter

Graph
Runtime

GPU

CPU

FPGA

Frontend Compiler Execution

!11

IR

• A functional IR, an ML-like (ReasonML, OCaml, SML, …) language tailored to
machine learning.

• Features closures, reference, ADTs, and primitive operators, tensors are the
primary value type.

• We can use this to represent full-models including a generative RNN and training
loops.

• Functional style makes it possible to analyze and transform as pure data-flow.

!12

RNN

x0

…

oN

sns1 s2 sn + 1

o1 o2

x1 xN

s0

!13

!14

def @generate(n, i, h, …):
 if (n == 0)
 []
 else
 let (output, new_hidden) =
 @rnn_cell(i, h, …);
 output + @generate(
 n - 1, output, new_hidden, …)

Parameters

Loop Counter

Functional style loop

Typing

• Typing these programs introduces a few challenges:

• Need static Tensor shape information to match accelerator primitives, optimize
aggressively, and provide better errors.

• Provide flexible typing for operators which contain shape input and output
relationships such as broadcast, flatten, concat, squeeze, and more.

!15

!16

Tensor<f32, (32, 3, 32, 32)>

Tensor : (BaseType, Shape) -> Type

Float : (Width: Int, Lanes: Int) -> BaseType

f32 = Float<32, 1>

4-d Tensor
N * Channels * Height * Width

Type Relation

• Operators, the primitive building block of machine learning, are hard to type
check (e.g. preconditions must hold over input tensors).

• A call can contain a series of relations which must hold over the input types.

• Enables very flexible typing of operators.

• For example can implement variable arguments using relations (concat) and input/
output relationships (broadcast).

!17

add :
forall (Lhs: Type, Rhs: Type, Out: Type),
(Lhs, Rhs) -> Out

where Broadcast(Lhs, Rhs, Out)

Broadcast(Tensor<f32, (3, 4, 5)>, Tensor<f32 (n, 3, 4, 5), Tensor<f32, (n, 3, 4, 5)>)

Broadcast(Tensor<f32, (1, 5)>, Tensor<f32, (n, 5)>, Tensor<f32, (n, 5)>)

For example we can type broadcasting addition:

Broadcasting is a tricky rule often employed in machine learning:

!18

!19

concat :
forall (Args: Type, Out: Type),
(Args) -> Out

where IsTuple(Args), Concat(Args, Out)

Or more complex constraints such as:

Optimizations
• We implement various optimizations over these programs including:

• Standard Optimizations

• Fusion

• Constant Propagation

• Accelerator Specific Optimizations

• Quantization (see Ziheng’s talk)

• FoldScaleAxis

• Data Packing

!20

Backends

Graph Runtime

Interpreter

AoT Compiler

FPGA

GPU

CPU

Relay

!21

Backends

• We implemented multiple execution backends to demonstrate the versatility
of Relay as an IR.

• Each backend builds on TVM’s existing low level Tensor IR (HalideIR).

• TVM is used for operators, but the rest of the program must be executed (e.g.
allocation, control-flow, recursion).

!22

Operator Compilation

!23

TVM operators.so

def @my_func(…) {
…

}

Graph Runtime

• TVM’s existing execution pipeline, can
execute a subset of Relay programs.

• Requires a graph, a shared library
containing operators, and parameters

GraphRTS

+ operators.so

!24

Interpreter

• A reference interpreter for Relay.

• Implements the reference semantics.

• Uses naive recursive AST traversal for interpreting control flow.

• Uses JIT compilation for operators.

!25

AoT Compiler

• A case study of what Relay IR affords, we built prototype compiler in less than
3 weeks.

• Generates code for CPU/GPU, FPGA support in the future.

• Removes interpretation overhead and enables optimization.

• Written as a pure Python library and uses Relay as dependency.

!26

Ahead of time compiler

def @my_func(…) {
…

}
Standard
Optimize

AoT
Optimize LittleCpp Clang

librelay_aot_my_func.so

!27

f = compile(my_func)
f(…)

VTA

• VTA is a target for Relay.

• We can compile high level models written in
Frameworks such as MxNet directly to Relay.

• Generic compilation to VTA will be
upstreamed soon after the conference.

!28

VTA

• VTA is a target for Relay.

• We can compile high level models written in
Frameworks such as MxNet directly to Relay.

• Generic compilation to VTA will be
upstreamed soon after the conference.

DRAM

LOAD
MODULE

INPUT BUFFER

WEIGHT BUFFER

STORE BUFFER

MICRO-OP
BUFFER

REGISTER
FILE

Tensor Core

Vector ALU

LD→CMP Q

CMP→LD Q

CMP→ST Q

ST→CMP Q

COMPUTE MODULE

STORE
MODULE

LOAD
CMD Q

COMPUTE
CMD Q

STORE
CMD Q

INSTRUCTION FETCH MODULE

!28

Evaluation
• Relay supports expressive models:

• We demonstrate Relay’s ability to optimize full models such as generative RNNs,
beating PyTorch by up to 3x.

• Relay provides competitive performance:

• We demonstrate better than TensorFlow and on par performance with NNVM on a
suite of models.

• Relay supports customized hardware:

• We show how Relay and TVM can be used to execute on FPGA based accelerators,
bring 11x performance improvement over baseline.

!29

!30

Relay-Interpreted RNN
Relay-Interpreted Cell

Relay-Compiled Cell
Relay-Compiled RNN

PyTorch

Relay

Relay

CNN Results

Relay

!31

VTA Results

!32

Future Work

• Evaluating Relay on training tasks.

• AutoRelay: applying ideas from AutoTVM to Relay.

• A high-level full differentiable programming language frontend (i.e Python
frontend, Haskell DSL).

• Novel analyses and optimizations for DL (e.g automatic differential privacy).

• Non-standard data types (e.g unums, posits).

!33

Lessons Learned

• Using a full program representation we were able to:

• Rephrase shape inference as type checking.

• Use Relay as platform to develop novel optimizations such as automatic
quantization.

• Execute Relay programs via a variety of backends and hardware devices.

• Demonstrate an increase in expressiveness does not come at the cost of
performance.

!34

Conclusion

• Relay is a new intermediate representation for
optimizing deep learning programs.

• We apply the straightforward insight that
machine learning models are just programs.

• This generalization enables support for a
greater range of programs, new optimizations,
and the ability to target a wide range of devices.

• Excited about production and research
collaborations.

http://sampl.cs.washington.edu

http://tvm.ai

!35

http://sampl.cs.washington.edu
http://tvm.ai

